簡易檢索 / 詳目顯示

研究生: 陳柏任
Chen, Po-Jen
論文名稱: 基於機器學習之太陽能產業技術演化分析
Technology evolution analysis for solar power using a machine learning approach
指導教授: 張瑞芬
Trappey, Amy J. C.
口試委員: 邱銘傳
Chiu, Ming-Chuan
張力元
Trappey, Charles Vincent
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 84
中文關鍵詞: 太陽能專利組合技術演進圖文本推荐系統機器學習
外文關鍵詞: solar power, patent portfolio, evolutionary graph, recommendation system, machine learning
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能係統及其相關技術已發展成為全球利用的綠色能源。對於提高太陽能轉換效率以提高太陽能在市場中的競爭力的新材料和新方法有許多創新研究。並且現有許多研究分析了太陽能領域的專利,發掘技術趨勢。但到目前為止還沒有同時針對專利和文獻進行交叉分析,其分別代表學術界及業界的發展狀況。在專利分析的文獻中,大多數研究僅使用單一方法或單一演算法進行文本探勘分析,如應用分群於專利文本分析。本研究提出了一種新的方法框架,通過應用多種機器學習之方法論來分析專利和文獻之資料集。該研究通過挖掘2280項專利和過去十年的5610篇文獻論文,欲挖掘其中有前景的太陽能技術。首先,從綜合文獻和專利文字探勘分析中構建了太陽能知識本體模式(或關鍵術語關係圖)。文字探勘分析則是利用分群的無監督機器學習技術,結合迪力克雷分布(LDA)之主題建模算法建構其主要主題。基於以上初步之機器學習演算法分析結果,本研究更進一步應用詞嵌入算法來建構技術推荐系統。該系統能雙向地找出專利及文獻兩個資料庫中含有最相關技術的文本,同時從其文本關鍵字能夠交互驗證太陽能特定子領域的前景技術。最後本研究透過專利演進圖來尋找技術演進過程。初步分析表明,許多專利都專注於太陽能水電存儲系統,以及將光能發電轉移到水力重力系統。本研究所建構之系統框架能有助於能源公司精準分析與其關鍵技術優勢和研發利益相關的技術,亦有助於學術界更有效率地提出有前景的技術發展。


    Solar power systems and their related technologies have developed into a globally utilized green energy source. There are many innovative studies of new materials and new methods for improving solar energy transformation efficiency to improve the competitiveness of solar energy in the marketplace. Also there are many existing studies analyzing patents in solar domain to discover the technology trend, but so far there is no reference conduct analysis to both patents and literatures, which reveal different aspect of development status. Moreover, most researches only use single methodology to do text mining. This, this research proposed a novel methodology framework by applying multiple machine learning measure to analyze both patent and literature dataset. This research searches for promising solar power technologies by text mining 2280 global patents and 5610 literature papers of the past decade. First, a solar power knowledge ontology schema (or a key term relationship map) is constructed from the comprehensive literature and patent review. unsupervised machine learning techniques for clustering patents and literature combined with the Latent Dirichlet Allocation (LDA) topic modeling algorithm identify their main topics. A word-embedding algorithm is applied to identify the patent documents of the specified technologies. Cross-validation of the results is used to model the technology progress with a patent evolution map. Initial analysis show that many patents focus on solar hydropower storage systems, transferring light generated power to waterpower gravity systems. Batteries are also used but have several limitations. The results help energy companies select technologies related to their key technical strengths and R&D interests.

    Abstract II List of Figures V List of Tables VII 1. Introduction 1 1.1 Research background 1 1.2 Research flowchart 2 2 Literature review 5 2.1 Renewable energy-solar power 5 2.1.1 Concentrated solar power 6 2.1.2 Photovoltaic system 8 2.2 Solar energy storage system 10 2.2.1 Thermal energy storage 11 2.2.2 PV energy storage 13 2.3 Patent text mining 17 2.3.1 Clustering 19 2.3.2 Technology function matrix 20 2.3.3 Word embedding 20 3 Methodology applied in this research 22 3.1 Clustering 23 3.2 Modified formal concept analysis 24 3.3 Latent Dirichlet Allocation 25 3.4 Doc2vec 28 4 Case study 31 4.1 Statistical analysis of patent metadata 31 4.2 Advanced analysis by text mining 39 4.3 Discussion 59 5 Conclusions and future works 61 References 64 Appendix A 75 Appendix B 78 Appendix C 84

    1. Appen, J., Stetz, T., Braun, M., & Schmiegel, A. (2014). Local voltage control strategies for PV storage systems in distribution grids. IEEE Transactions on Smart Grid, 5(2), 1002-1009.
    2. Bassetti, M. C., Consoli, D., Manente, G., & Lazzaretto, A. (2018). Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage. Renewable Energy, 128, 460-472.
    3. Behar, O. (2018). Solar thermal power plants–A review of configurations and performance comparison. Renewable and Sustainable Energy Reviews, 92, 608-627.
    4. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of machine learning research, 3(Feb), 1137-1155.
    5. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
    6. Campello, R. J., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858-2875.
    7. Cavallaro, F. (2010). Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy, 87(2), 496-503.
    8. Chang, S. B., Lai, K. K., & Chang, S. M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107-117.
    9. Cheng, T. Y., & Wang, M. T. (2013). The Patent-Classification Technology/Function Matrix-A Systematic Method for Design Around. Journal of Intellectual Property Rights, 18(2), 158-167.
    10. Csiro.au. (2016). Australian solar tech to help China reach clean energy targets - CSIRO. [online] Available at: https://www.csiro.au/en/News/News-releases/2016/ Australian-solar-tech-to-help-China-reach-clean-energy-targets [Accessed 29 Oct. 2018].
    11. Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In Sequential Monte Carlo methods in practice (pp. 3-14). Springer, New York, NY.
    12. Emerging Energy Storage Technologies for Solar and Wind Power - Wiki - Energy Efficiency. (2018). Retrieved from https://thegrid.rexel.com/en-us/knowledge/energy-efficiency/w/wiki/243/emerging-energy-storage-technologies-for-solar-and-wind-power
    13. EPO and USPTO (2017). CPC Cooperative Patent Classification System Annual Report 2016. URL: https://www.cooperativepatentclassification.org/publications/AnnualReports/CPCAnnualReport2016.pdf.
    14. Ferrara, M. A., Striano, V., & Coppola, G. (2019). Volume Holographic Optical Elements as Solar Concentrators: An Overview. Applied Sciences, 9(1), 193.
    15. Ghenai, C., Merabet, A., Salameh, T., & Pigem, E. C. (2018). Grid-tied and stand-alone hybrid solar power system for desalination plant. Desalination, 435, 172-180.
    16. Girolami, M., & Kabán, A. (2003, July). On an equivalence between PLSI and LDA. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (pp. 433-434). ACM.
    17. Glavin, M. E., Chan, P. K., Armstrong, S., & Hurley, W. G. (2008, September). A stand-alone photovoltaic supercapacitor battery hybrid energy storage system. In Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th (pp. 1688-1695). IEEE.
    18. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: Communication technologies and standards. IEEE transactions on Industrial informatics, 7(4), 529-539.
    19. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
    20. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900.
    21. Kenisarin, M., & Mahkamov, K. (2007). Solar energy storage using phase change materials. Renewable and sustainable energy reviews, 11(9), 1913-1965.
    22. Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228-237.
    23. Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M., & Heeger, A. J. (2007). Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 317(5835), 222-225.
    24. Kim, S. K., Jeon, J. H., Cho, C. H., Ahn, J. B., & Kwon, S. H. (2008). Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer. IEEE transactions on industrial electronics, 55(4), 1677-1688.
    25. Kolokotsa, D., Kampelis, N., Mavrigiannaki, A., Gentilozzi, M., Paredes, F., Montagnino, F., & Venezia, L. (2019). On the integration of the energy storage in smart grids: technologies and applications. Energy Storage.
    26. Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change, 125, 236-244.
    27. Lalouni, S., Rekioua, D., Rekioua, T., & Matagne, E. (2009). Fuzzy logic control of stand-alone photovoltaic system with battery storage. Journal of power Sources, 193(2), 899-907.
    28. Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368.
    29. Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences and documents. In International Conference on Machine Learning (pp. 1188-1196).
    30. Lee, C., Jeon, J., & Park, Y. (2011). Monitoring trends of technological changes based on the dynamic patent lattice: A modified formal concept analysis approach. Technological Forecasting and Social Change, 78(4), 690-702.
    31. Lee, W.W. (2008). Thin-film Solar Battery Technology Development Trend Analysis (IEK Report), Industry, Science and Technology International Strategy Center, Industrial Technology Research Institute (ITRI), Taiwan.
    32. Li, X., Xie, Q., Jiang, J., Zhou, Y., & Huang, L. (2018). Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology. Technological Forecasting and Social Change.
    33. Li, Y., Gao, W., & Ruan, Y. (2018). Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan. Renewable energy, 127, 514-523.
    34. Li, Z. S., Zhang, G. Q., Li, D. M., Zhou, J., Li, L. J., & Li, L. X. (2007). Application and development of solar energy in building industry and its prospects in China. Energy Policy, 35(8), 4121-4127.
    35. Liu, M., Tay, N. S., Bell, S., Belusko, M., Jacob, R., Will, G., & Bruno, F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews, 53, 1411-1432.
    36. Liu, T., Liu, Q., Lei, J., Sui, J., & Jin, H. (2018). Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation. Applied Energy, 225, 380-391.
    37. Louwen, A., Van Sark, W., Schropp, R., & Faaij, A. (2016). A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 147, 295-314.
    38. Ma, T., Yang, H., & Lu, L. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. 2014, Energy Conversion and Management, 79, 387-397.
    39. Maeda, T., Ito, H., Hasegawa, Y., Zhou, Z., & Ishida, M. (2012). Study on control method of the stand-alone direct-coupling photovoltaic–Water electrolyzer. International Journal of Hydrogen Energy, 37(6), 4819-4828.
    40. Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 582-594.
    41. Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., & Kruizenga, A. (2017). Concentrating solar power Gen3 demonstration roadmap. National Renewable Energy Laboratory (NREL), Golden, Colorado, USA.
    42. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
    43. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).
    44. Notton, G., Voyant, C., Fouilloy, A., Duchaud, J. L., & Nivet, M. L. (2019). Some Applications of ANN to Solar Radiation Estimation and Forecasting for Energy Applications. Applied Sciences, 9(1), 209.
    45. Ogunmodimu, O., & Okoroigwe, E. C. (2018). Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review. Renewable and Sustainable Energy Reviews, 90, 104-119.
    46. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.
    47. Petrollese, M., Cau, G., & Cocco, D. (2018). Use of weather forecast for increasing the self-consumption rate of home solar systems: An Italian case study. Applied energy, 212, 746-758.
    48. Philibert, C., Frankl, P., Tam, C., Abdelilah, Y., Bahar, H., Marchais, Q. & Wiesner, H. (2014). Technology roadmap: solar photovoltaic energy. International Energy Agency, Paris, France.
    49. Philibert, C., Frankl, P., Tam, C., Abdelilah, Y., Bahar, H., Mueller, S., & Waldron, M. (2014). Technology roadmap: solar thermal electricity. International Energy Agency, Paris, France.
    50. Podjaski, F., Kröger, J., & Lotsch, B. V. (2018). Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides. Advanced Materials, 30(9), 1705477.
    51. Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., ... & Duchesnay, E. (2016). scikit-learn: Machine Learning in Python.
    52. Qin, J., Hu, E., Nathan, G. J., & Chen, L. (2018). Mixed mode operation for the Solar Aided Power Generation. Applied Thermal Engineering, 139, 177-186.
    53. Riffonneau, Y., Bacha, S., Barruel, F., & Ploix, S. (2011). Optimal power flow management for grid connected PV systems with batteries. IEEE Transactions on Sustainable Energy, 2(3), 309-320.
    54. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
    55. Sahraei, N., Looney, E. E., Watson, S. M., Peters, I. M., & Buonassisi, T. (2018). Adaptive power consumption improves the reliability of solar-powered devices for internet of things. Applied Energy, 224, 322-329.
    56. Sampaio, P. G. V., González, M. O. A., de Vasconcelos, R. M., dos Santos, M. A. T., de Toledo, J. C., & Pereira, J. P. P. (2018). Photovoltaic technologies: Mapping from patent analysis. Renewable and Sustainable Energy Reviews, 93, 215-224.
    57. Santos, C. D., Tan, M., Xiang, B., & Zhou, B. (2016). Attentive pooling networks. arXiv preprint arXiv:1602.03609.
    58. Sato, Y., & Iwayama, M. (2009, November). Interactive constrained clustering for patent document set. In Proceedings of the 2nd international workshop on Patent information retrieval (pp. 17-20). ACM.
    59. Selvaraj, J., & Rahim, N. A. (2009). Multilevel inverter for grid-connected PV system employing digital PI controller. IEEE transactions on industrial electronics, 56(1), 149-158.
    60. Sherwani, A. F., & Usmani, J. A. (2010). Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews, 14(1), 540-544.
    61. Spachos, P., & Mackey, A. (2018). Energy efficiency and accuracy of solar powered BLE beacons. Computer Communications, 119, 94-100.
    62. Sridhar, H., & Meera, K. S. (2014). Study of grid connected solar photovoltaic system using real time digital simulator. In 2014 International Conference on Advances in Electronics Computers and Communications (pp. 1-6). IEEE.
    63. Srivastava, S. K., Piwek, P., Ayakar, S. R., Bonakdarpour, A., Wilkinson, D. P., & Yadav, V. G. (2018). A Biogenic Photovoltaic Material. Small, 1800729.
    64. Steinmann, W. D., & Tamme, R. (2008). Latent heat storage for solar steam systems. Journal of Solar Energy Engineering, 130(1), 011004.
    65. Tamme, R., Laing, D., & Steinmann, W. D. (2003, January). Advanced thermal energy storage technology for parabolic trough. In ASME 2003 International Solar Energy Conference(pp. 563-571). American Society of Mechanical Engineers.
    66. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014). Learning sentiment-specific word embedding for twitter sentiment classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 1555-1565).
    67. Tant, J., Geth, F., Six, D., Tant, P., & Driesen, J. (2013). Multiobjective battery storage to improve PV integration in residential distribution grids. IEEE Transactions on Sustainable Energy, 4(1), 182-191.
    68. Teng, J. H., Luan, S. W., Lee, D. J., & Huang, Y. Q. (2013). Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems. IEEE Trans. Power Syst, 28(2), 1425-1433.
    69. Thomson, R. Engineering Sections, Derwent World Patents Index®, Thomson Reuters, 6th Edition. 2016, Available: http://clarivate.com/
    70. Trappey, A. J., Trappey, C. V., Wang, D. Y., Li, S. J., & Ou, J. J. (2014, May). Evaluating renewable energy policies using hybrid clustering and analytic hierarchy process modeling. Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 IEEE 18th International Conference on (pp. 716-720). IEEE.
    71. Trappey, A.J.C.; Trappey, C.V.; Wang, Y. C.; Ou, J.R.; Li, S.J. (2015). An integrated self-organizing map and analytic hierarchy process modeling approach for evaluating renewable energy policies. International Journal of Electronic Business Management, 13(1), 3-14.
    72. Trappey, A.J.C. , Trappey, C.V., Fan, C.-Y., Hsu, A.P.T., Li, X.K., Lee, I.J.Y. (2017). IoT patent roadmap for smart logistic service provision in the context of Industry 4.0. Journal of the Chinese Institute of Engineers (JCIE), Vol 40, Issue 7, 593-602 (SCI, http://dx.doi.org/10.1080/02533839.2017.1362325)
    73. Trappey, A.J.C., Trappey, C.V., Chang, A.C., Li, X.K. (2018). Deriving competitive foresight using an ontology-based patent roadmap and valuation analysis. International Journal on Semantic Web and Information Systems (IJSWIS)
    74. Trappey, A.J.C., Trappey, C.V., Chung, L.S. (2017). IP portfolios and evolution of biomedical additive manufacturing applications. Scientometrics, 111(1), 139-157.
    75. Trappey, A.J.C., Trappey, C.V., Lee, K.L.C. (2017). Tracing the evolution of biomedical 3D printing technology using ontology based patent concept analysis. Technology Analysis & Strategic Management, 29(4), 339-352.
    76. Tyagi, V. V., Rahim, N. A., Rahim, N. A., Jeyraj, A., & Selvaraj, L. (2013). Progress in solar PV technology: Research and achievement. Renewable and sustainable energy reviews, 20, 443-461.
    77. Uchida, S., Xue, J., Rand, B. P., & Forrest, S. R. (2004). Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C 60 active layer. Applied physics letters, 84(21), 4218-4220.
    78. Wang, X., & McCallum, A. (2006, August). Topics over time: a non-Markov continuous-time model of topical trends. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 424-433). ACM.
    79. Wang, Y., Zou, H., Chen, X., Zhang, F., & Chen, J. (2018). Adaptive Solar Power Forecasting based on Machine Learning Methods. Applied Sciences, 8(11), 2224.
    80. Wang, Z., Roffey, A., Losantos, R., Lennartson, A., Jevric, M., Petersen, A. U., ... & Börjesson, K. (2018). Macroscopic heat release in a molecular solar thermal energy storage system. Energy & Environmental Science.
    81. Wilson, A. T., & Robinson, D. G. (2011). Tracking Topic Birth and Death in LDA. Sandia National Laboratories.
    82. Wu, C. Y., & Mathews, J. A. (2012). Knowledge flows in the solar photovoltaic industry: Insights from patenting by Taiwan, Korea, and China. Research Policy, 41(3), 524-540.
    83. Yang, D., Wang, X., & Kang, J. (2018, March). SWOT Analysis of the development of green energy industry in china: Taking solar energy industry as an example. In Green Energy and Applications (ICGEA), 2018 2nd International Conference on(pp. 103-107). IEEE.
    84. Yilanci, A., Dincer, I., & Ozturk, H. K. (2009). A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progress in Energy and Combustion Science, 35(3), 231-244.
    85. Zahedi, A. (2011). Maximizing solar PV energy penetration using energy storage technology. Renewable and Sustainable Energy Reviews, 15(1), 866-870.
    86. Zalba, B., Marın, J. M., Cabeza, L. F., & Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering, 23(3), 251-283.
    87. Zhang, S., & He, Y. (2013). Analysis on the development and policy of solar PV power in China. Renewable and Sustainable Energy Reviews, 21, 393-401.
    88. Zhang, Y., Shang, L., Huang, L., Porter, A. L., Zhang, G., Lu, J., & Zhu, D. (2016). A hybrid similarity measure method for patent portfolio analysis. Journal of Informetrics, 10(4), 1108-1130.
    89. Zhao, Z. Y., Zhang, S. Y., Hubbard, B., & Yao, X. (2013). The emergence of the solar photovoltaic power industry in China. Renewable and Sustainable Energy Reviews, 21, 229-236.
    90. 李隆洲 (2015)。以智財演進為基進行 3D 列印應用於生醫領域之發展趨勢分析 (指導教授:張瑞芬),碩士論文,國立清華大學,工業工程與工程管理學系。
    91. 莊傳慶 (2017)。技術功效矩陣自動建構與驗證方法-以智慧網實系統專利分析為例 (指導教授:張瑞芬),碩士論文,國立清華大學,工業工程與工程管理學系。
    92. 葉士緯、黃振榮。(2017)。合作專利分類(CPC)實施現況之探討與應用學【專題】。智慧財產權月刊,217,5-9。
    93. 鄒承翰 (2018)。以潛在狄利克雷分配為基發展智慧知識本體建構方法論 (指導教授:張瑞芬),碩士論文,國立清華大學,工業工程與工程管理學系。
    94. 鍾力善 (2016)。以R語言為基礎建構之專利分析方法論:以3D列印應用於生醫領域為例 (指導教授:張瑞芬),碩士論文,國立清華大學,工業工程與工程管理學系。

    QR CODE