研究生: |
李德慈 Lee, Di-Chi. |
---|---|
論文名稱: |
可調控生物素與鏈黴親合素化學探針於生物感測的應用 The Applications of Streptavidin-Biotin Controlled Binding Probes (SBIO Probes) for Biosensing |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
林俊成
Lin, Chun-Cheng 王宗興 Wang, Tsung-Shing |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 籠閉生物素探針 、鏈黴親合素 、分子識別 、訊號放大法 |
外文關鍵詞: | streptavidin, signal amplification, molecular recognition, streptavidin-biotin controlled binding probes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子識別 (例如:抗原−抗體,DNA−DNA和鏈黴親合素−生物素)是用於辨識目標分析物與訊號放大的現代生物分析之方法之一。此方法不適用於偵測金屬離子、陰離子與小分子 (如H2O2及O2−),因為這些分子太小而不能有效地結合到大分子上。因此,我們設計鏈黴親合素與生物素開關控制的結合探針 (SBIO probes),藉由探針辨識目標分子,透過酵素或螢光染料綴合的鏈黴親合素反應,對氟離子偵測訊號進行放大,並應用於網版印刷電極與微陣列之檢測技術。與傳統的分析方法相比,籠閉生物素探針展現了更低的背景值,且不受複雜環境中其他分子的干擾,甚至能運用在不同種類的檢測技術上。我們相信此新型檢測分析方法有助於醫學上的診斷與基礎生物學研究。
Molecular recognition (e.g. antigen-antibody, DNA-DNA and streptavidin-biotin) is fundamental in modern bioanalytical methods for target recognition and signal amplification. However, this approach is not applicable to metals, anions and small reactive molecules (e.g. H2O2 and O2−) as these molecules are too small to bind effectively to the macromolecule. Therefore, we demonstrate a general “OFF-ON” molecular recognition approach based on streptavidin-biotin controlled binding probes (SBIO probes) for enzyme-catalyzed signal amplified detection of fluoride (F−) with electrochemical detection techniques. This versatile approach can also be applied in microarray by using streptavidin conjugated with fluorescent dye reporters for target detection. As compared to the conventional analytical methods, the new strategy has several advantages, such as minimal background in its “OFF” state, multiple signal amplification steps and an unlimited selection of detection techniques. We believe that this SBIO probe strategy will be useful for a wide range of applications, such as in medical diagnosis and basic biological research, where highly specific signal enhancement is required.
(1) Goggins, S.; Frost, C. G. Approaches towards Molecular Amplification for Sensing. Analyst 2016, 141, 3157.
(2) Amir, R. J.; Shabat, D. Self-immolative Dendrimer Biodegradability by Multi-enzymatic Triggering. Chem. Commun. 2004, 1614.
(3) Banala, S.; Arts, R.; Aper, S. J. A.; Merkx, M. No Washing, Less Waiting: Engineering Biomolecular Reporters for Single-step Antibody Detection in Solution. Org. Biomol. Chem. 2013, 11, 7642.
(4) Vashist, S. K.; Luong, J. H. T. In Handbook of Immunoassay Technologies. 2018, pp 97.
(5) Gaffar, S.; Udamas, D.; Hartati, Y. W.; Subroto, T. Gold Modified Screen Printed Carbon Electrode (SPCE) with Steptavidin-biotin System for Detection of Heart Failure by Using Immunosensor. AIP Conf. Proc. 2018, 2049, 030017.
(6) Clark Jr., L. C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29.
(7) Borchert, H., Cyclic Voltammetry. In Solar Cells Based on Colloidal Nanocrystals, Borc, 2014, 111.
(8) Dusemund, C.; Sandanayake, K. R. A. S.; Shinkai, S. Selective Fluoride Recognition with Ferroceneboronic Acid. J. Chem. Soc., Chem. Commun. 1995, 333.
(9) Arimori, S.; Ushiroda, S.; Peter, L. M.; Jenkins, A. T. A.; James, T. D. A Modular Electrochemical Sensor for Saccharides. Chem. Commun. 2002, 2368.
(10) 王彥棋,探討表面修飾網版印刷碳膠電極在電化學特性影響,國立交通大學碩士論文, 2007.
(11) 馮俊方,平整性可拋棄式網版印刷碳電極之研發與應用,國立中興大學碩士論文, 2014.
(12) Parkash, O.; Yean, C. Y.; Shueb, R. H. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen. Diagnostics, 2014, 165.
(13) Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N. Recent Discoveries and Applications Involving Small-molecule Microarrays. Curr. Opin. Chem. Biol. 2014, 18, 21.
(14) Alhamdani, M. S.; Schröder, C.; Hoheisel, J. D. Oncoproteomic Profiling with Antibody Microarrays. Genome Med. 2009, 1, 68.
(15) Bradner, J. E.; McPherson, O. M.; Koehler, A. N. A Method for the Covalent Capture and Screening of Diverse Small Molecules in a Microarray Format. Nat. Protoc. 2006, 1, 2344.
(16) Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V. Evidence Suggesting that High Intake of Fluoride Provokes Nephrolithiasis in Tribal Populations. Urol. Res. 2001, 29, 238.
(17) Kalita, A. C.; Murugavel, R. Fluoride Ion Sensing and Caging by a Preformed Molecular D4R Zinc Phosphate Heterocubane. Inorg. Chem. 2014, 53, 3345.
(18) Galbraith, E.; James, T. D. Boron Based Anion Receptors as Sensors. Chem. Soc. Rev. 2010, 39, 3831.
(19) Lingane, J. J. A study of the Lanthanum Fluoride Membrane Electrode for End Point Detection in Titrations of Fluoride with Thorium, Lanthanum, and Calcium. Anal. Chem. 1967, 39, 881.
(20) Parham, H.; Rahbar, N. Solid Phase Extraction–spectrophotometric Determination of Fluoride in Water Samples Using Magnetic Iron Oxide Nanoparticles. Talanta. 2009, 80, 664.
(21) Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J.-I. Fluorescent Probe for Detection of Fluoride in Water and Bioimaging in A549 Human Lung Carcinoma Cells. Chem. Commun. 2009, 4735.
(22) Roy, A.; Kand, D.; Saha, T.; Talukdar, P. A Cascade Reaction Based Fluorescent Probe for Rapid and Selective Fluoride Ion Detection. Chem. Commun. 2014, 50, 5510.
(23) Sun, X.; Dahlhauser, S. D.; Anslyn, E. V. New Autoinductive Cascade for the Optical Sensing of Fluoride: Application in the Detection of Phosphoryl Fluoride Nerve Agents. J. Am. Chem. Soc. 2017, 139, 4635.
(24) Padié, C.; Zeitler, K. A Novel Reaction-based, Chromogenic and “Turn-on” Fluorescent Chemodosimeter for Fluoride Detection. New J. Chem. 2011, 35, 994.
(25) Baker, M. S.; Phillips, S. T. A Small Molecule Sensor for Fluoride Based On an Autoinductive, Colorimetric Signal Amplification Reaction. Org. Biomol. Chem. 2012, 10, 3595.
(26) Zhuang, X.; Liu, W.; Wu, J.; Zhang, H.; Wang, P. A Novel Fluoride Ion Colorimetric Chemosensor Based On Coumarin. Spectrochim Acta A. 2011, 79, 1352.
(27) Lu, W.; Jiang, H.; Hu, F.; Jiang, L.; Shen, Z. A Novel Chemosensor Based on Fe(III)-complexation for Selective Recognition and Rapid Detection of Fluoride Anions in Aqueous Media. Tetrahedron 2011, 67, 7909.
(28) Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong, K. S.; Kim, J. S. An Activatable Theranostic for Targeted Cancer Therapy and Imaging. Angew. Chem. Int. Ed. 2014, 53, 4469.
(29) Kim, K.; Yang, H.; Jon, S.; Kim, E.; Kwak, J. Protein Patterning Based on Electrochemical Activation of Bioinactive Surfaces with Hydroquinone-Caged Biotin. J. Am. Chem. Soc. 2004, 126, 15368.
(30) Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18, 1261.
(31) Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T. Target-Activated Streptavidin–Biotin Controlled Binding Probe. Chem. Sci. 2018, 9, 770.
(32) 行政院環境保護署公告水中陰離子檢測方法-離子層析法.