簡易檢索 / 詳目顯示

研究生: 黃文傑
Huang, Wen Chieh
論文名稱: 設計及合成可抑制C型肝炎及屈公熱之抗病毒試劑
Design and Syntheses of Anti-viral Agents against Hepatitis C and Chikungunya Fever
指導教授: 胡紀如
Hwu, Jih Ru
口試委員: 蔡淑貞
Tsay, Shwu Chen
洪嘉呈
Horng, Jia Cherng
許銘華
Hsu, Ming Hua
蔡福源
Tsai, Fu Yuan
謝發坤
Shieh, Fa Kuen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 141
中文關鍵詞: C型肝炎屈公熱香豆素抗病毒構效關係
外文關鍵詞: hepatitis C virus, chikungunya fever, coumarin, antivirus, structure–activity relationships
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C型肝炎病毒及屈公熱病毒為RNA病毒,皆對全球人類健康造成相當大的威脅。每年有超過四十萬人死於C型肝炎病毒造成之肝臟疾病.在過去兩年,美國食品藥物管理局通過了若干抗C型肝炎病毒用藥,但這些藥物不但要價不斐,且具低持續性病毒學反應(SVR),加上其長時間之療程,與導致患者不適之副作用,使得持續發展新型C型肝炎抑制劑,依然是一重要課題。屈公熱是一種由新興病毒屈公病毒所引起的急性傳染病。「屈公」一詞來自非洲馬康德(Makonde)語,意思是「扭折者」,用於形容罹患此病之患者,因為關節劇烈疼痛,而造成肢體扭曲。目前對於屈公熱疾病仍無有效之疫苗及治療方法。
    本論文中,我們設計合成一系列新型以甲硫連結之咪唑—香豆素共軛化合物。一系列咪唑—香豆素共軛化合物中,計有三個化合物對於C型肝炎病毒有極佳之EC50值(5.1~8.4 μM)且具高選擇性(SI大於20)。由此系列化合物抑制C型病毒之構效關係中可歸納出幾點變因,如咪唑結構上一號氮上的氫原子以及香豆素結構上的取代基(氯、氟、溴、甲基及甲氧基)等。
    此外,為了對抗屈公熱病毒,我們設計並合成一系列之香豆素-鳥苷共軛化合物。利用甲硫基,在6,8-雙硫鳥苷之六號位置引入具不同取代基之3-氯甲基香豆素。另外,也在6,8-雙硫鳥苷之八號碳引入對照組配位基(如:甲基、芐基以及萘甲基)。此系列化合物之結構已由光譜鑑定,根據生物數據分析推導之構效關係(SAR),香豆素部分為關鍵部分,其上如有甲氧基取代,具良好之抗病毒效果,於鳥苷部分,其羥基可提高化合物水溶度,增加其藥理適性。在一系列具抗屈公熱病毒活性之化合物中,其中三個化合物有良好之抑制效果,其EC50值為9.9~13.9 μM,而選擇性指數(SI)達9.37~21.7。


    Hepatitis C virus and chikungunya virus fall into the category of RNA and emerging viruses respectively, which cause serious global health-care problems. More than 400,000 people die from liver diseases related to the hepatitis C virus each year. During the past two years, the U.S. Food and Drug Administration has approved a few drugs for hepatitis C diseace. These therapeutic treatments, however, are expensive and limited by the low sustained virologic response rate, the long duration of treatment, and adverse events. As an emerging disease, chikungunya fever causes a major medical problem nowadays. The term “chikungunya” is a Makonde word for “that which bends up”, which refers to the contorted posture of infected patients suffering from severe joint pain. Unfortunately, current treatments of CHIK fever are for symptoms with no effective licensed vaccine and drug.
    In this thesis, we report a series of new conjugated compounds were synthesized by chemical methods from imidazole and coumarin derivatives with a –SCH2– linkage. Experimental results indicate that, of the twenty newly synthesized imidazole–coumarin conjugates, three of them exhibited appealing EC50 values (5.1–8.4 μM) and selective indices >20 against hepatitis C virus. Their potency and selectivity were increased substantially by modification of their structure with two factors: imidazole nucleus with a hydrogen atom at the N(1) position and coumarin nucleus with a substituent, such as Cl, F, Br, Me, and OMe. These guidelines provide valuable information for further development of conjugated compounds as anti-viral agents.
    Moreover, a series of coumarin–guanosine conjugated compounds were designed and synthesized as potential chikungunya virus inhibiting agents. They were obtained by coupling of 6,8-dithioguanosine at its C-6 position with 3-(chloromethyl)coumarin reagents bearing F, Cl, Br, Me, and OMe substituents through a –SCH2– joint. Meanwhile, an organic “dummy” ligand (e.g., methy, benzyl, and naphthylmethyl) or coumarinyl moiety was attached at the C-8 position. Their chemical structures were determined unambiguously by spectroscopic methods. Three of these new conjugates were found to inhibit CHIKV in Vero cells with significant potency (EC50 = 9.9–13.9 μM) and showed low toxicity (CC50 = 96.5–212 μM). Their selectivity index values were 9.37–21.7. By analysis of the data from the anti-viral assays, their structure–activity relationship was derived. It indicates that the coumarin moiety is essential and OMe group is the best for anti-viral activity, as well as the three hydroxyl groups are helpful for hydrophilicity.

    Abstract i 中文摘要 iii 謝 誌 v 1. Introduction 1 1.1. Strategies in the Design of Antiviral Agents 20 1.2. Design of Anti-HCV Agents 22 1.3. Design of Anti-CHIKV Agents 24 2. Results 26 2.1. Synthesis of Imidazole–Coumarin Conjugates 26 2.2. Synthesis of (1-Ribofuranosyl)imidazole–coumarin Conjugates 27 2.4. Synthesis of Monocoumarin–Dithioguanosine Conjugates 19, 25, and 31. 29 2.5. Evaluation of Biological Activity against Hepatitis C Virus 33 2.6. Evaluation of Biological Activity against Chikungunya Virus 35 3. Discussion 38 3.1. Identification of the Structures of New Imidazole–Coumarin Conjugated Compounds 38 3.2. Identification of Structures of New Monocoumarin– and Biscoumarin– Dithioguanosine Conjugated Compounds. 39 3.3. Antiviral Evaluation in the HCV Genotype 1b Subgenomic Replicon 42 3.4. Measurement of Lipophilicity 44 3.5. Structure–Activity Relationship of Anti-HCV Agents: Essential Moieties and Functional Groups 45 3.6. StructureActivity Relationship of Anti-CHIKV Agents: Essential Moieties and Favored Functional Groups 49 4. Conclusions 52 5. Experimental Section 54 General procedure 54 Standard Procedure for the Synthesis of Imidazole– and Guanosine–Coumarin Conjugates 3, 7, 12, 19, 25, and 31. 55 2-[(Coumarin-3’-yl)methylthio]imidazole (3a) 56 2-[(6’-Fluorocoumarin-3’-yl)methylthio]imidazole (3b) 56 2-[(6′-Chlorocoumarin-3′-yl)methylthio]imidazole (3c) 57 2-[(6′-Bromocoumarin-3′-yl)methylthio]imidazole (3d) 58 2-[(8′-Methoxycoumarin-3′-yl)methylthio]imidazole (3e) 58 1-Methyl-2-[(coumarin-3′-yl)methylthio]imidazole (3f) 59 1-Methyl-2-[(6′-chlorocoumarin-3′-yl)methylthio]imidazole (3g) 60 1-(2',3',5'-Tri-O-acetyl-β-D-ribofuranos-1'-yl)imidazole-2-thiol (5) 60 1- β-D-Ribofuranosyl-imidazole-2-thiol (6) 61 1-(β-D-Ribofuranos-1′′-yl)-2-[(coumarin-3′-yl)methylthio]imidazole (7a) 62 1-(β-D-Ribofuranos-1"-yl)-2-[(6’-fluorocoumarin-3'-yl)methylthio]imidazole (7b) 63 1-(β-D-Ribofuranos-1"-yl)-2-[(6'-chlorocoumarin-3'-yl)methylthio]imidazole (7c) 64 1-(β-D-Ribofuranos-1"-yl)-2-[(6'-bromocoumarin-3'-yl)methylthio]imidazole (7d) 64 1-(β-D-Ribofuranos-1"-yl)-2-[(8'-methoxycoumarin-3'-yl)methylthio]imidazole (7e) 65 2-Amino-8-bromo-6-one-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (8). 66 2-Amino-8-bromo-6-chloro-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (9). 67 2-Amino-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine-6,8-dithione (10). 67 2-Amino-9-(β-D-ribofuranos-1′-yl)purine-6,8-dithione (11). 68 2-Amino-6,8-bis[(6′-fluorocoumarin-3′-yl)methylthio]-9-(β-D-ribofuranos-1′′-yl)purine (12b). 70 2-Amino-6,8-bis[(6′-chlorocoumarin-3′-yl)methylthio]-9-(β-D-ribofuranos-1′′-yl)purine (12c). 71 2-Amino-6,8-bis[(6′-bromocoumarin-3′-yl)methylthio]-9-(β-D-ribofuranos-1′′-yl)purine (12d). 72 2-Amino-6,8-bis[(8′-methoxycoumarin-3′-yl)methylthio]-9-(β-D-ribofuranos-1′′-yl)purine (12e). 73 2-Amino-6,8-bis[(6′-methoxycoumarin-3′-yl)methylthio]-9-(β-D-ribofuranos-1′′-yl)purine (12f). 74 2-Amino-6,8-bis[(6′-methylcoumarin-3′-yl)methylthio]-9-(β-D-ribofuranos-1′′-yl)purine (12g). 75 2-Amino-8-methylthio-6-one-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (15). 76 2-Amino-6-chloro-8-methylthio-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (16). 77 2-Amino-8-methylthio-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine-6-thione (17). 78 2-Amino-6-(coumarin-3′-yl)methylthio-8-methylthio-9-(β-D-ribofuranos-1′′-yl)purine (19a). 79 2-Amino-6-(6′-chlorocoumarin-3′-yl)methylthio-8-methylthio-9-(β-D-ribofuranos-1′′-yl)purine (19c). 79 2-Amino-6-(6′-bromocoumarin-3′-yl)methylthio-8-methylthio-9-(β-D-ribofuranos-1′′-yl)purine (19d). 80 2-Amino-8-methylthio-6-(8′-methoxycoumarin-3′-yl)methylthio-9-(β-D-ribofuranos-1′′-yl)purine (19e). 81 2-Amino-8-benzylthio-6-one-9-(2′′,3′′,5′′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (21). 82 2-Amino-8-benzylthio-6-chloro-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (22). 83 2-Amino-8-benzylthio-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine-6-thione (23). 84 2-Amino-8-benzylthio-9-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine-6-thione (24). 84 2-Amino-8-benzylthio-6-(6′-chlorocoumarin-3′-yl)methylthio-9-(β-D-ribofuranos-1′′-yl)purine (25c). 85 2-Amino-8-benzylthio-6-(6′-bromocoumarin-3′-yl)methylthio-9-(β-D-ribofuranos-1′′-yl)purine (25d). 86 2-Amino-8-benzylthio-6-(6′-methoxycoumarin-3′-yl)methylthio-9-(β-D-ribofuranos-1′′-yl)purine (25f). 87 2-Amino-8-(1′-naphthalenylmethylthio)-6-one-9-(2′′,3′′,5′′-tri-O-acetyl-β-D-ribofuranos-1′-yl)purine (27). 88 2-Amino-6-chloro-8-(1′-naphthalenylmethylthio)-9-(2′′,3′′,5′′-tri-O-acetyl-β-D-ribofuranos-1′′-yl)purine (28). 89 2-Amino-8-(1′-naphthalenylmethylthio)-9-(2′′,3′′,5′′-tri-O-acetyl-β-D-ribofuranos-1′′-yl)purine-6-thione (29). 90 2-Amino-8-(1′-naphthalenylmethylthio)-9-(β-D-ribofuranos-1′′-yl)purine -6-thione (30). 90 2-Amino-6-(coumarin-3′-yl)methylthio-8-(1′-naphthalenylmethylthio)-9-(β-D-ribofuranos-1′′-yl)purine (31a). 91 2-Amino-6-(6′-methoxycoumarin-3′-yl)methylthio-8-(1′-naphthalenylmethylthio)-9-(β-D-ribofuranos-1′′-yl)purine (31f). 92 6. References 93 7. Spectra 109

    1. World Health Organization. Fact Sheet No. 164. http://www.who.int/mediacentre/factsheets/fs164/en/ (accessed September 26, 2014).
    2. Centers for Disease Control and Prevention. Screening for hepatitis during the domestic medical examination. http://www.cdc.gov/immigrantrefugeehealth/guidelines/domestic/hepatitis-screening- guidelines.html (accessed March 6, 2014).
    3. Petta, S.; Macaluso, F. S.; Craxì, A. Cardiovascular diseases and HCV infection: a simple association or more? Gut. 2014, 63, 369–375.
    4. Lauer, G. M. Immune responses to hepatitis C virus (HCV) infection and the prospects for an effective HCV vaccine or immunotherapies. J. Infect. Dis. 2013, 207, S7– S12.
    5. Thimme, R.; Binder, M.; Bartenschlager, R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection FEMS Microbiol. Rev. 2012, 36, 663–683.
    6. Kidd-Ljunggren, K.; Miyakawa, Y.; Kidd, A. H. Genetic variability in hepatitis B viruses. J. Gen. Virol. 2002, 83, 1267–1280.
    7. For a review, see: Huang, Z.; Murray, M. G.; Secrist, J. A., III. Recent development of therapeutics for chronic HCV infection. Antiviral Res. 2006, 71, 351–362.
    8. For a review, see: Hayashi N.; Takehara T. Antiviral therapy for chronic hepatitis C: past, present, and future. J. Gastroenterol. 2006, 41, 17–27.
    9. Fattovich, G.; Giustina, G.; Favarato, S.; Ruol, A. A. Survey of adverse events in 11,241 patients with chronic viral hepatitis treated with alfa interferon. J. Hepatol. 1996, 24, 38– 47.
    10. Orrin, E.; Barnabas, A.; Agarwal, K.; Walsh, S. A. Cutaneous side-effects of antihepatitis C treatment: the U.K. experience. Br. J. Dermatol. 2015, 172, 292¬– 293.
    11. Lawitz, E.; Mangia, A.; Wyles, D.; Rodriguez-Torres, M.; Hassanein, T.; Gordon, S. C.; Schultz, M.; Davis, M. N.; Kayali, Z.; Reddy, K. R.; Jacobson, I. M.; Kowdley, K. V.; Nyberg, L.; Subramanian, G. M.; Hyland, R. H.; Arterburn, S.; Jiang, D.; McNally, J.; Brainard, D.; Symonds, W. T.; McHutchison, J. G.; Sheikh, A. M.; Younossi, Z.; Gane, E. J. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 2013, 368, 1878–1887.
    12. U.S. Food and Drug Administration. Available online: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm418365.ht m (accessed on 10 October, 2014), FDA approves first combination pill to treat hepatitis C.
    13. U.S. Food and Drug Administration. Available online: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427530.ht m (accessed on 19 December, 2014), FDA approves Viekira Pak to treat hepatitis C.
    14. van de Ven, N.; Fortunak, J.; Simmons, B.; Ford, N.; Cooke, G.S.; Khoo, S.; Hill, A. Minimum target prices for production of direct-acting antivirals and associated diagnostics to combat hepatitis C virus. Hepatology 2015, 61, 1174–1182.
    15. Negro F. Adverse effects of drugs in the treatment of viral hepatitis Best Pract. Res. Clin. Gastroenterol 2010, 24, 183–192.
    16. For a review, see: Moradpour, D.; Penin, F.; Rice, C. M. Nat. Rev. Microb. 2007, 5, 453–463.
    17. Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244, 359–362.
    18. Hoffman, B.; Liu, Q. Hepatitis C viral protein translation: Mechanisms and implications in developing antivirals. Liver Int. 2011, 31, 1449–1467.
    19. Scheel, T. K. H.; Rice, C. M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nature Med. 2013, 19, 837–849.
    20. Pereira, A. A.; Jacobson, I. M. New and experimental therapies for HCV. Nat. Rev. Gastroenterol. 2009, 6, 403–411.
    21. Reiser, M.; Hinrichsen, H.; Benhamou, Y.; Reesink, H. W.; Wedemeyer, H. Avendano, C. Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. HEPATOLOGY 2005, 41, 832–835.
    22. For a review, see: De Clercq, E. A guided tour through the antiviral drug field. Future Virol. 2006, 1, 19–35.
    23. For a review, see: De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discovery 2007, 6, 1001–1018.
    24. Schwartz, O.; Albert, M. L. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 2010, 8, 491–500.
    25. Powers, A. M.; Logue, C. H. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 2007, 88, 2363–2377.
    26. Leo, Y. S.; Chow, A. L.; Tan, L. K.; Lye, D. C.; Lin, L.; Ng, L. C. Chikungunya outbreak, Singapore, 2008. Emerg. Infect. Dis. 2009, 15, 836-837.
    27. Rianthavorn, P.; Prianantathavorn, K.; Wuttirattanakowit, N.; Theamboonlers, A.; Poovorawan, Y. An outbreak of chikungunya in southern Thailand from 2008 to 2009 caused by African strains with A226V mutation. Int. J. Infect. Dis. 2010, 14S, e161-5.
    28. Dupont-Rouzeyrol, M.; Caro, V.; Guillaumot, L.; Vazeille, M.; D'Ortenzio, E.; Thiberge, J. M.; Baroux, N.; Gourinat, A. C.; Grandadam, M.; Failloux, A. B. Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region). Vector Borne Zoonotic Dis. 2012, 12, 1036–1041.
    29. Delisle, E.; Rousseau, C.; Broche, B.; Leparc-Goffart, I.; L'Ambert, G.; Cochet, A.; Prat, C.; Foulongne, V.; Ferre, J. B.; Catelinois, O.; Flusin, O.; Tchernonog, E.; Moussion, I. E.; Wiegandt, A.; Septfons, A.; Mendy, A.; Moyano, M. B.; Laporte, L.; Maurel, J.; Jourdain, F.; Reynes, J.; Paty, M. C.; Golliot, F. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro. Surveill. [online] 2015, 20, pii: 21108. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21108 (accessed Apr 30, 2015)
    30. Gay, N.; Rousset, D.; Huc, P.; Matheus, S.; Ledrans, M.; Rosine, J.; Cassadou, S.; Noel, H. Seroprevalence of asian lineage chikungunya virus infection on Saint Martin island, 7 Months After the 2013 Emergence. Am. J. Trop. Med. Hyg. [online] 2015, 15-0308. http://www.ajtmh.org/content/early/2015/12/03/ajtmh.15- 0308.full.pdf+html (accessed Dec 7, 2015)
    31. World Health Organization. http://www.who.int/csr/don/10-august-2015- chikungunya/en/ (accessed Aug 10, 2015)
    32. Centers for Disease Control and Prevention. http://www.cdc.gov/chikungunya/geo/ (accessed Oct 23, 2015)
    33. Schwartz, O.; Albert, M. L. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 2010, 8, 491–500.
    34. Gardner, C. L.; Burke, C. W.; Higgs, S. T.; Klimstra, W. B.; Ryman, K. D. Interferon- alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 2012, 425, 103–112.
    35. Kelvin, A. A.; Banner, D.; Silvi, G.; Moro, M. L.; Spataro, N.; Gaibani, P.; Cavrini, F.; Pierro, A.; Rossini, G.; Cameron, M. J.; Bermejo-Martin, J. F.; Paquette, S. G.; Xu, L.; Danesh, A.; Farooqui, A.; Borghetto, I.; Kelvin, D. J.; Sambri, V.; Rubino, S. Inflammatory cytokine expression is associated with chikungunya virus resolution and symptom severity. PLoS Negl. Trop. Dis. [online] 2011, 5, e1279. doi:10.1371/journal.pntd.0001279
    36. Cardona-Ospina, J. A.; Villamil-Gómez, W. E.; Jimenez-Canizales, C. E.; Castañeda- Hernández, D. M.; Rodríguez-Morales, A. J. Estimating the burden of disease and the economic cost attributable to chikungunya, Colombia, 2014. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 793–802.
    37. Centers for Disease Control and Prevention. http://www.cdc.gov/chikungunya/ (accessed November 16, 2015).
    38. Weaver, S. C.; Osorio, J. E.; Livengood, J. A.; Chen, R.; Stinchcomb, D. T. Chikungunya virus and prospects for a vaccine. Expert Rev. Vaccines. 2012, 11,1087– 1101.
    39. Thomas, S.; Rai, J.; John, L.; Günther, S.; Drosten, C.; Pützer, B. M.; Schaefer, S. Functional dissection of the alphavirus capsid protease: sequence requirements for activity. Virol. J. 2010, 7, 327–333.
    40. Ozden, S.; Lucas-Hourani, M.; Ceccaldi, P. E.; Basak, A.; Valentine, M.; Benjannet, S.; Hamelin, J.; Jacob, Y.; Mamchaoui, K.; Mouly, V.; Despres, P.; Gessain, A.; Butler- Browne, G.; Chretien, M.; Tangy, F.; Vidalain, P. O.; Seidah, N. G. Inhibition of Chikungunya virus infection in cultured human muscle cells by furin inhibitors: impairment of the maturation of the E2 surface glycoprotein. J. Biol. Chem. 2008, 283, 21899–21908.
    41. Briolant, S.; Garin, D.; Scaramozzino, N.; Jouan, A.; Crance, J. M. In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination. Antiviral Res. 2004, 61, 111–117.
    42. Bourjot, M.; Leyssen, P.; Eydoux, C.; Guillemot, J. C.; Canard, B.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M. Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia. 2012, 83, 1076–1080.
    43. Murali, K. S.; Sivasubramanian, S.; Vincent, S.; Murugan, S. B.; Giridaran, B.; Dinesh, S.; Gunasekaran, P.; Krishnasamy, K.; Sathishkumar, R. Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac. J. Trop. Med. 2015, 8, 352–358.
    44. Pohjala, L.; Utt, A.; Varjak, M.; Lulla, A.; Merits, A.; Ahola, T.; Tammela, P. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS One 2011, 6, e28923.
    45. Delogu, I.; Pastorino, B.; Baronti, C.; Nougairède, A.; Bonnet, E.; de Lamballerie, X. In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antiviral Res. 2011, 90, 99–107.
    46. Rashad, A. A.; Mahalingam, S.; Keller, P. A. Chikungunya virus: emerging targets and new opportunities for medicinal chemistry. J. Med. Chem. 2014, 57, 1147–1166.
    47. D'hooghe, M. M.; ollet, K.; De Vreese, R. J.; onckers, T. H.; Dams, G.; De Kimpe, N. Design, synthesis, and antiviral evaluation of purine-β-lactam and purine-aminopropanol hybrids. J. Med. Chem. 2012, 55, 5637–5641.
    48. Delang, L.; Segura Guerrero, N.; Tas, A.; Quérat, G.; Pastorino, B.; Froeyen, M.; Dallmeier, K.; Jochmans, D.; Herdewijn, P.; Bello, F.; Snijder, E. J.; de Lamballerie, X.; Martina, B.; Neyts, J.; van Hemert, M. J.; Leyssen, P. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J. Antimicrob. Chemother. 2014, 69, 2770–2784.
    49. Gigante, A.; Canela, M. D.; Delang, L.; Priego, E. M.; Camarasa, M. J.; Querat, G.; Neyts, J.; Leyssen, P.; Pérez-Pérez, M. J. Identification of [1,2,3]triazolo[4,5- d]pyrimidin-7(6H)-ones as novel inhibitors of Chikungunya virus replication. J. Med. Chem. 2014, 57, 4000–4008.
    50. Hwu, J. R.; Kapoor, M.; Tsay, S. C.; Lin, C. C.; Hwang, K. C.; Horng, J. C.; Chen, I. C.; Shieh, F. K.; Leyssen, P.; Neyts, J. Benzouracil–coumarin–arene conjugates as inhibiting agents for chikungunya virus. Antiviral Res. 2015, 118, 103–109.
    51. Albulescu, I. C.; van Hoolwerff, M.; Wolters, L. A.; Bottaro, E.; Nastruzzi, C.; Yang, S. C.; Tsay, S. C.; Hwu, J. R.; Snijder, E. J.; van Hemert, M. J. Suramin inhibits chikungunya virus replication through multiple mechanisms. Antiviral Res. 2015, 121, 39–46.
    52. Jadav, S. S.; Sinha, B. N.; Hilgenfeld, R.; Pastorino, B.; de Lamballerie, X.; Jayaprakash, V. Thiazolidone derivatives as inhibitors of chikungunya virus. Eur. J. Med. Chem. 2015, 89, 172–178.
    53. Wintachai, P.; Thuaud, F.; Basmadjian, C.; Roytrakul, S.; Ubol, S.; Désaubry, L.; Smith, D. R. Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol. Immunol. 2015, 59, 129–141.
    54. Kaur, P. Thiruchelvan, M.; Lee, R. C.; Chen, H.; Chen, K. C.; Ng, M. L.; Chu, J. J. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob. Agents Chemother. 2013, 57, 155–167.
    55. Nothias-Scaglia, L. F.; Retailleau, P.; Paolini, J.; Pannecouque, C.; Neyts, J.; Dumontet, V.; Roussi, F.; Leyssen, P.; Costa, J.; Litaudon, M. Jatrophane diterpenes as inhibitors of Chikungunya virus replication: structure-activity relationship and discovery of a potent lead. J. Nat. Prod. 2014, 77, 1505–1512.
    56. Bourjot, M.; Leyssen, P.; Neyts, J.; Dumontet, V.; Litaudon, M. Trigocherrierin A, a potent inhibitor of chikungunya virus replication. Molecules 2014, 19, 3617–3627.
    57. Gupta, D. K.; Kaur, P.; Leong, S. T.; Tan, L. T.; Prinsep, M. R.; Chu, J. J. Anti- Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Mar. Drugs. 2014, 12, 115–127.
    58. Tsay, S.-C.; Hwu, J. R.; Singha, R.; Huang, W.-C.; Chang, Y. H.; Hsu, M.-H.; Shieh, F.-K.; Lin, C.-C.; Hwang, K.C.; Horng, J.-C.; De Clercq, E.; Vliegen, I.; Neyts, J. Coumarins hinged directly on benzimidazoles and their ribofuranosides to inhibit hepatitis C virus. Eur. J. Med. Chem. 2013, 63, 290–298.
    59. Hwu, J. R.; Singha, R.; Hong, S.-C.; Chang, Y.-H.; Das, A. R.; Vliegen, I.; De Clercq, E.; Neyts, J. Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res. 2008, 77, 152−162.
    60. Neyts, J.; De Clercq, E.; Singha, R.; Y.-H.; Chang,; Das, A. R.; Chakraborty, S. K.; Hong, S.-C.; Tsay, S.-C.; Hsu, M.-H.; Hwu, J. R. Structure-activity relationship of new anti-hepatitis C virus agents: heterobicycle-coumarin conjugates. J. Med. Chem. 2009, 52, 1486−1490.
    61. Hwu, J. R.; Lin, S.-Y.; Tsay, S.-C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin- purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem. 2011, 54, 2114–2126.
    62. Hwu, J. R.; Lin, S.-Y.; Tsay, S.-C.; Singha, R.; Pal, B. K.; Leyssen, P.; Neyts, J. Development of New Sulfur-Containing Conjugated Compounds as Anti-HCV Agents, Phosphorus. Sulfur, Silicon, Relat. Elem. 2011, 186, 1144–1152.
    63. Khabnadideh, S.; Rezaei, Z.; Khalafi–Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A. A. Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett. 2003, 13, 2863–2865.
    64. Bhatnagar, A.; Sharma, P. K.; Kumar, N. A review on “imidazoles”: their chemistryand pharmacological potentials. Int. J. PharmTech Res. 2011, 3, 268– 282.
    65. Baraldi, P. G.; Beria, I.; Cozzi, P.; Bianchi, N.; Gambari, R.; Romagnoli, R. Synthesis and growth inhibition activity of alpha-bromoacrylic heterocyclic and benzoheterocyclic derivatives of distamycin A modified on the amidino moiety. Bioorg. Med. Chem. 2003, 11, 965–975.
    66. Ujjinamatada, R. K.; Baier, A.; Borowski, P.; Hosmane, R. S. An analogue of AICAR with dual inhibitory activity against WNV and HCV NTPase/helicase: synthesis and in vitro screening of 4-carbamoyl-5-(4,6-diamino-2,5-dihydro-1,3,5-triazin-2- yl)imidazole-1-beta-D-ribofuranoside. Bioorg. Med. Chem. Lett. 2007, 17, 2285–2288.
    67. Plummer, C. W.; Finke, P. E.; Mills, S. G.; Wang, J.; Tong, X.; Doss, G. A.; Fong, T. M.; Lao, J. Z.; Schaeffer, M. T.; Chen, J.; Shen, C. P.; Stribling, D. S.; Shearman, L. P.; Strack, A. M.; Van der Ploeg, L. H. Synthesis and activity of 4,5-diarylimidazoles as human CB1 receptor inverse agonists. Bioorg. Med. Chem. Lett. 2005, 15, 1441-1446.
    68. Mayer, G.; Taberner, P. V. Effects of the imidazoline ligands efaroxan and KU14R on blood glucose homeostasis in the mouse. Eur. J. Pharmacol. 2002, 454, 95–102.
    69. Babizhayev, M. A. Biological activities of the natural imidazole-containing peptidomimetics n-acetylcarnosine, carcinine and L-carnosine in ophthalmic and skin care products. Life Sci. 2006, 78, 2343–2357.
    70. Scheiner, S.; Yi, M. The proton transfer properties of imidazole. J. Phys. Chem. 1996, 100, 9235–9241.
    71. Chen, J.; Li, C.-M.; Wang, J.; Ahn, S.; Wang, Z.; Lu, Y.; Dalton, J. T.; Miller, D. D.; Li, W. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization. Bioorg. Med. Chem. 2011, 19, 4782–4795.
    72. Fasciano, J.; Steele, T.; Castagnoli, N.; Katz, J.; Ricaurte, G. The effect of N- methylation on fenfluramine's neurotoxic and pharmacologic actions. Brain Res. 1997, 763, 182–190.
    73. Nichols, D. B.; Leão, R. A.; Basu, A.; Chudayeu, M.; de Moraes, P. F.; Talele, T. T.; Costa, P. R.; Kaushik–Basu, N. Evaluation of coumarin and neoflavone derivatives as HCV NS5B polymerase inhibitors. Chem. Biol. Drug Des. 2013, 81, 607−614.
    74. Cervi, A.; Aillard, P.; Hazeri, N.; Petit, L.; Chai, C. L. L.; Willis, A. C.; Banwell, M. G. Total syntheses of the coumarin-containing natural products pimpinellin and fraxetin using Au(I)-catalyzed intramolecular hydroarylation (IMHA) chemistry. J. Org. Chem. 2013, 78, 9876−9882.
    75. François, J.; Raymond, A. Small-molecule hepatitis C virus (HCV) ns3/4a serine protease inhibitors. WO Patent 128344 A1, 2008.
    76. Njoroge, F. G.; Chen, K. X.; Shih, N.-Y.; Piwinski, J. J. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res. 2008, 41, 50−59.
    77. Lin, C.; Kwong, A. D.; Perni, R. B. Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS3.4A serine protease. Infect. Disord. Drug Targets 2006, 6, 3−16.
    78. Lucas-Hourani, M.; Lupan, A.; Desprès, P.; Thoret, S.; Pamlard, O.; Dubois, J.; Guillou, C.; Tangy, F.; Vidalain, P. O.; Munier-Lehmann, H. A Phenotypic Assay to Identify Chikungunya Virus Inhibitors Targeting the Nonstructural Protein nsP2. J. Biomol. Screen. 2012, 18, 172–179.
    79. Abdelhafez, O. M.; Amin, K. M.; Batran, R. Z.; Maher, T. J.; Nada, S. A.; Sethumadhavan, S. Synthesis, anticoagulant and PIVKA-II induced by new 4- hydroxycoumarin derivatives. Bioorg. Med. Chem. 2010, 18, 3371–3378.
    80. Rashamusea, T. J.; Kleina, R.; T. Kayea, P. T. Synthesis of baylis–hillman-derived phosphonated 3-(benzylaminomethyl)coumarins. Synth. Commun. 2010, 40, 3683–3690.
    81. Ong, E. B.; Watanabe, N.; Saito, A.; Futamura, Y.; Abd, E.; Galil, K. H.; Koito, A.; Najimudin, N.; Osada, H. Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. J. Biol. Chem. 2011, 286, 14049–14056.
    82. Arshad, A.; Osman, H.; Bagley, M. C.; Lam, C. K.; Mohamad, S.; Zahariluddin, A. S. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem. 2011, 46, 3788–3794.
    83. Timonen, J. M.; Nieminen, R. M.; Sareila, O.; Goulas, A.; Moilanen, L. J.; Haukka, M.; Vainiotalo, P.; Moilanen, E.; Aulaskari, P. H.; Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives, Eur. J. Med. Chem. 2011, 46, 3845–38 50.
    84. Zhang, S.; Yang, J.; Li, H.; Li, Y.; Liu, Y.; Zhang, D.; Zhang, F.; Zhou, W.; Chen, X. Skimmin, a coumarin, suppresses the streptozotocin-induced diabetic nephropathy in wistar rats. Eur. J. Pharmacol. 2012, 692, 78–83.
    85. Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem. 2014, 76, 539–548.
    86. Guan, A. Y.; Liu, C. L.; Li, M.; Li, Z. N.; Zhang, M. X.; Zhang, H. Synthesis and bioactivity of novel coumarin derivatives. Nat. Prod. Commun. 2011, 6, 1917–1920.
    87. Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem. 2015, 186, 133–138.
    88. Li, Y. J.; Wang, C. Y.; Ye, M. Y.; Yao, G. Y.; Wang, H. S. Novel coumarin-containing aminophosphonatesas antitumor agent: synthesis, cytotoxicity, DNA-binding and apoptosis evaluation. Molecules 2015, 20, 14791–14809.
    89. Miri, R.; Nejati, M.; Saso, L.; Khakdan, F.; Parshad, B.; Mathur, D.; Parmar, V. S.; Bracke, M. E.; Prasad, A. K.; Sharma, S. K.; Firuzi, O. Structure-activity relationship studies of 4-methylcoumarin derivatives as anticancer agents. Pharm. Biol. 2016, 54, 105–110.
    90. Bhattacharyya, S. S.; Paul, S.; Mandal, S. K.; Banerjee, A.; Boujedaini, N.; Khuda- Bukhsh, A. R. A synthetic coumarin (4-methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice. Eur. J. Pharmacol. 2009, 614, 128–136.
    91. Lancaster, D. L.; Patel, N.; Lennard, L.; Lilleyman, J. S. 6-Thioguanine in children with acute lymphoblastic leukaemia: influence of food on parent drug pharmacokinetics and 6-thioguanine nucleotide concentrations. Br. J. Clin. Pharmacol. 2001, 51, 531–539.
    92. de Boer, N. K.; van Nieuwkerk, C. M.; Aparicio Pages, M. N.; de Boer, S. Y.; Derijks, L. J.; Mulder, C. J. Promising treatment of autoimmune hepatitis with 6-thioguanine after adverse events on azathioprine. Eur. J. Gastroenterol. Hepatol. 2005, 17, 457–461.
    93. Yang, Q. E.; Li, K. G.; Mikovits, J. A. Eradication of human immunodeficiency virus type 1-infected cells by a combination of antimetabolic cytotoxic chemotherapy and antiviral chemotherapy in vitro: a pilot study. J. Infect. Dis. 2002, 186, 706–709.
    94. Chang, L.; Lee, S. Y.; Leonczak, P.; Rozenski, J.; De Jonghe, S.; Hanck, T.; Müller, C. E.; Herdewijn, P. Imidazopyridine- and purine-thioacetamide derivatives: potent inhibitors of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). J. Med. Chem. 2014, 57, 10080–10100.
    95. Kaye, P. T.; Musa, M. A. A convenient and improved Baylis–Hillman synthesis of 3- substituted 2H-1-benzopyran-2-ones. Synthesis 2002, 18, 2701–2706.
    96. Ali-von Laue, C.; Zoschke, C.; Do, N.; Lehnen, D.; Küchler, S.; Mehnert, W.; Blaschke, T,; Kramer, K. D.; Plendl, J.; Weindl, G.; Korting, H. C.; Hoeller Obrigkeit, D.; Merk, H. F.; Schäfer-Korting, M. Improving topical non-melanoma skin cancer treatment: In vitro efficacy of a novel guanosine-analog phosphonate. Skin Pharmacol. Physiol. 2014, 27, 173–180.
    97. Simons, C.; Wu, Q.; Htar, T. T. Recent advances in antiviral nucleoside and nucleotide therapeutics. Curr. Top. Med. Chem. 2005, 5, 1191–1203.
    98. Chien, T. C.; Saluja, S. S.; Drach, J. C.; Townsend, L. B. Synthesis and antiviral evaluation of polyhalogenated imidazole nucleosides: dimensional analogues of 2,5,6-trichloro-1-(β-D-ribofuranosyl)benzimidazole. J. Med. Chem. 2004, 47, 5743–5752.
    99. Bhan, P.; Bhan, A.; Hong, M.; Hartwell, J.G.; Saunders, J.M.; Hoke, G.D. 2',5'- Linked oligo-3'-deoxyribonucleoside phosphorothioate chimeras: thermal stability and antisense inhibition of gene expression. Nucleic. Acids Res. 1997, 25, 3310–3317.
    100. Schulz, B. S.; Pfleiderer, W. A new synthesis of 9-beta-D-ribofuranosyluric acid and its 5'-monophosphate. Nucleic Acids Symp. Ser. 1985, 157–160.
    101. Bartenschlager, R. Hepatitis C virus replicons: potential role for drug development. Nat. Rev. Drug Discovery 2002, 1, 911–916.
    102. Lohmann, V.; Körner, F.; Koch, J.-O.; Herian, U.; Theilmann, L.; Bartenschlager, R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999, 285, 110–113.
    103. Bassetto, M.; De Burghgraeve, T.; Delang, L.; Massarotti, A.; Coluccia, A.; Zonta, N.; Gatti, V.; Colombano, G.; Sorba, G.; Silvestri, R.; Tron, G. C.; Neyts, J.; Leyssen, P.; Brancale, A. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Res. 2013, 98, 12–18.
    105. Lin, T.-S.; Cheng, J.-C.; Ishiguro, K.; Sartorelli, A.C. 8-Substituted guanosine and 2'- deoxyguanosine derivatives as potential inducers of the differentiation of Friend erythroleukemia cells. J. Med. Chem. 1985, 28, 1194–1198.
    106. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley: New York, USA, 2005; pp. 92–94.
    107. Krečmerová, M; Holý, A.; Pískala A.; Masojídková, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. J. Med. Chem. 2007, 50, 1069–1077.
    108. Hann, M. M.; Keserü, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat. Rev. Drug Discov. 2012, 11, 355–365.
    109. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68.
    110. Leeson, P. Drug discovery: chemical beauty contest. Nature 2012, 481, 455–456.
    111. Kraszni, M.; Bányai, I.; Noszál, B. Determination of conformer-specific partition coefficients in octanol/water systems. J. Med. Chem. 2003, 46, 2241–2245.
    112. Lin S. Y. Ph. D. Thesis, National Tsing Hua University at Hsinchu, Taiwan, 2011.
    113. Yalkowsky, S. H.; Dannenfelser, R. M. Aquasol Database of Aqueous Solubility. Version 5; College of Pharmacy, University of Arizona: Tucson, USA, 1992.
    114. Lipinski, C. A.; Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000, 44, 235–249.
    115. Albulescu, I. C.; Tas, A.; Scholte, F. E.; Snijder, E. J.; van Hemert, M. J. An in vitro assay to study chikungunya virus RNA synthesis and the mode of action of inhibitors. J. Gen. Virol. 2014, 95, 2683–2692.
    116. Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber. 1981, 114, 1234–1255.
    117. Gosselin, G.; Imbach, J. L.; Townsend, L. B.; Panzica, R. P. The synthesis of imidazole- 2-thione nucleosides. J. Heterocycl. Chem. 1979, 16, 1185–1191.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE