簡易檢索 / 詳目顯示

研究生: 戴嘉偉
Tai, Chia-Wei
論文名稱: 利用週期性延遲以改善基於正交分頻多工之實體層安全性
Exploiting Cyclic Delays to Improve OFDM-based Physical Layer Security
指導教授: 蔡育仁
口試委員: 洪樂文
黃元豪
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 56
中文關鍵詞: 正交分頻多工實體層安全性無線通訊週期性延遲束波成型多輸出單輸出
外文關鍵詞: physical layer security, cyclic delay, OFDM, MISO, beamforming, wireless communication
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線通訊的訊號基本上是以廣播的型態傳送出去,所以送出的訊息很容易就能被惡意的竊聽者所竊聽。因此,近年來無線通訊的實體層安全性得到越來越多的關注。許多用來提升實體層安全性的方法也紛紛被提出,如犧牲部份傳送功率來製造人為噪聲以用來干擾竊聽者就是其中之一。在我們的研究中,我們考慮一個擁有多輸入傳送端、單輸出接收端、以及單輸出竊聽者的正交分頻多工系統,並提出一個新的改善實體層安全性的方法。這個方法的基本構想是利用周期性延遲會同時改變接收者及竊聽者所看到的等效通道的特性,藉由適當設計一個乘於數據符號上的回饋因子,我們能夠單方面的復原接收端的等效通道,但保留對竊聽者等效通道的擾亂。模擬分析顯示被提出的方法確實能維持對竊聽者通道的干擾,相較於產生人為噪聲的方法,更能在二位元相位偏移調變及十六位元正交振幅調變使竊聽者有更差的誤碼率。此外,在竊聽者方通道容量上的模擬也能與誤碼率的結果相符合。


    Because the signal transmission in wireless communication is essentially broadcasting, the transmitted information is easily wire-tapped by malicious eavesdroppers. As a result, physical layer security of wireless communication has gained more and more attention in recent years. Methods such as artificial noise have been proposed to guarantee physical layer security, where part of the transmit power is sacrificed to generate artificial noise for interfering eavesdroppers. In this work, we consider a MISOSE OFDM system and propose a new approach to improve physical layer security. The idea of the proposed method is to exploit the property that cyclic delays change the effective channels of the intended receiver and eavesdroppers. By properly designing a compensation factor and multiply it to the transmitted data symbol, we can recover the channel of the intended receiver while keeping the distortion on the channel of eavesdroppers. Simulation results show that the proposed method can distort the channel at eavesdroppers and degrade their BPSK and 16-QAM BER more than the method of using artificial noise. Moreover, simulation results on the channel capacity of eavesdropper also match with the BER results.

    CONTENTS 中文摘要 ii ABSTRACT iii 誌謝 iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 Chapter 2 System Model 4 2.1 Multiple-Input Single-Output Single-antenna Eavesdropper (MISOSE) Wiretap Channel 4 2.2 MISO-OFDM System 5 2.3 MISO-OFDM with Transmit Beamforming 7 Chapter 3 Exploiting Cyclic Delays to Improve OFDM-based Physical Layer Security 10 3.1 Cyclic Delays in OFDM Systems 11 3.2 The Design of Weighting Factors 14 3.3 Power Normalization 15 3.4 Controls on the Ratio of Rising Power 18 3.4.1 Choices of Cyclic Delays 19 3.4.2 Additional Phase-Shifts to Data Symbols 22 3.5 Detection at the Receiver and the Eavesdropper 25 Chapter 4 Analysis on the Proposed Method 28 4.1 MSE 29 4.2 Phase Difference of Eve’s Effective Channel 30 4.3 Channel Correlation 34 Chapter 5 Simulation Results and Discussion 35 5.1 Comparison on Eve’s BER 35 5.1.1 Analytical BPSK BER in The AN Method 36 5.1.2 Analytical 16-QAM BER in The AN Method 39 5.1.3 System with More Than Two Transmit Antennas 42 5.2 Eve’s Channel Capacity 45 5.2.1 Upper bound on Eve’s Channel Capacity of the AN Method 45 5.2.2 Upper bound on Eve’s Channel Capacity in the Proposed Method 46 Chapter 6 Conclusion 53 REFERENCE 54

    [1] I. Csiszar and J. Korner, “Broadcast channels with confidential messages,” IEEE Transactions on Information Theory, vol. 24, pp. 339-348, 1978.
    [2] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol.54. no. 8, pp.1355-1387, 1975.
    [3] S. Goel and R. Negi, “Guaranteeing Secrecy using Artificial Noise,” IEEE Transactions on Wireless Communications , vol. 7, pp. 2180-2189, 2008.
    [4] A. Khisti and G. W. Wornell, “Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel,” IEEE Transactions on Information Theory, vol. 56, pp. 3088-3104, 2010.
    [5] S. Plass, A. Dammann, G. Richter and M. Bossert, “Resulting channel characteristics from time-varying cyclic delay diversity in OFDM,” in IEEE 66th Vehicular Technology Conference, pp. 1336-1340, 2007.
    [6] M. Torabi, M. R. Soleymani and S. Aissa, “On the performance of MIMO-OFDM systems with imperfect channel information,” in International Conference on Wireless Networks, Communications and Mobile Computing, pp. 600-605 vol.1, 2005.
    [7] A. Mukherjee and A. L. Swindlehurst, “Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI,” IEEE Transactions on Signal Processing, vol. 59, pp. 351-361, 2011.
    [8] P. K. Gopala, Lifeng Lai and H. El Gamal, “On the Secrecy Capacity of Fading Channels,” IEEE Transactions on Information Theory, vol. 54, pp. 4687-4698, 2008.
    [9] Xiangyun Zhou and M. R. McKay, “Physical layer security with artificial noise: Secrecy capacity and optimal power allocation,” in International Conference on Signal Processing and Communication Systems, pp. 1-5, 2009.
    [10] Taesang Yoo and A. Goldsmith, “Capacity of fading MIMO channels with channel estimation error,” in IEEE International Conference on Communications, pp. 808-813 Vol.2, 2004.
    [11] Barros,J. and Rodrigues, M.R.D., “Secrecy Capacity of Wireless Channels,” in IEEE International Symposium on Information Theory, pp. 356-360, 2006
    [12] Yi-Sheng Shiu, Shih Yu Chang, Hsiao-Chun Wu, S. C. -. Huang and Hsiao-Hwa Chen, "Physical layer security in wireless networks: a tutorial," IEEE Wireless Communications, vol. 18, pp. 66-74, 2011.
    [13] D. N. C. Tse and P. Viswanath, “Fundamentals of Wireless Communications.” Cambridge, U.K.: Cambridge Univ. Press, 2005.
    [14] J. Proakis and M. Salehi, “Digital Communications,” 4th Edition. McGraw-Hill, 2008.
    [15] T. M. Cover and J.A. Thomas, “Elements of Information Theory,” 2nd Edition. John Wiley & Sons, Inc., 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE