研究生: |
楊右丞 Yang, Yu-Chen |
---|---|
論文名稱: |
金–氧化亞銅核殼奈米晶體的製備及其形狀相關之光學、電學性質和光催化活性之研究 Synthesis and Shape-Dependent Optical, Electrical Properties and Photocatalytic Activity of Gold–Cuprous Oxide Core–Shell Nanocrystals |
指導教授: |
果尚志
Gwo, Shangjr |
口試委員: |
黃暄益
Huang, Hsuan-Yi 黃哲勳 Huang, Jer-Shing 周必泰 Chou, Pi-Tai 邱雅萍 Chiu, Ya-Ping |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 133 |
中文關鍵詞: | 氧化亞銅 、奈米晶體 、形狀相關 、晶面相關 、電性 、光性 、表面電漿共振 、金奈米顆粒 、核殼結構 |
外文關鍵詞: | Cuprous Oxide, Nanocrystals, Shape-Dependent, Facet-Dependent, Electrical Property, Optical Property, Surface Plasmon Resonance, Gold Nanoparticles, Core-Shell Structures |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米科學與科技已然成為當前新興的研究領域;主要肇因於材料在奈米尺度下所展現不同於巨觀尺度下材料的獨特化學與光學特性。對於奈米粒子,與大小變化相關的性質,特別是相同材料之塊材中所沒有的,更是吸引了強烈的科學興趣。量子侷限效應就是個迷人且在微小的奈米範疇中專有的現象之一。過去的十年為了獲得所需的應用,在奈米尺度下材料與大小相關之性質已被探索並見證在研究形貌與其結晶性控制;並體現於許多應用如光催化,表面拉曼散射、生物檢測、生物標定或治療上。然而至今,許多基礎物理特性的研究如材料的光學或電學性質都被侷限在球型對稱的奈米顆粒上。是故,與形狀相關的性質很少被發現與研究。在本篇論文中,我們發展了一個簡單且可靠的水像化學合成方式,用以製造氧化亞銅及金–氧化亞銅之金屬–半導體的核殼結構之奈米粒子,且決定性地準確控制其大小與形狀。並廣泛地探討與其大小、形狀、晶面相關之電學、光催化與光學性質。此工作幫助我們瞭解半導體奈米粒子所具有晶面相關之電學性質,這項新發現的基礎性質應廣泛存在於所有具有形狀的半導體奈米晶體中。因此,為了達到許多應用的最佳效率,如太陽能的收集、光化學、光催化、及化學感測,特定的形狀控制及其相關性質研究,對於金屬–半導體奈米結構的工程應用供了一個新的可能方針。
Nanoscience and nanotechnology has become emerging fields of research today because materials at nanoscale usually present different and unique chemical and physical properties compared to the bulk. For nanopaticles, the size-related properties that are missing in the bulk counterparts are in particular of great scientific interests. Quantum confinement is, for example, one of the most fascinating phenomena exclusively existing in low-dimensional nano domains. The last decade has witnessed the exploration in the research of morphology and crystallinity control at nanoscale in order to obtain desired size-related properties, which may enable various applications in photocatalysis, surface-enhanced Raman scattering (SERS), biosensing, bioimaging, and even therapy. So far, most studies of the fundamental physical properties such as electrical and optical properties are limited to the nanoparticles with spherical symmetry. Therefore, the shape-dependent properties of these nanocrystals are rarely observed. In this dissertation, we developed reliable and robust methods for deterministic synthesis of Cu2O semiconductor nanoparticles and Au–Cu2O metal–semiconductor core–shell nanocomposites with well-defined morphology. We comprehensively studied their size-, shape- and facet-dependent electrical, photo-catalytic and optical properties.
Chapter 1
(1) Grondahl, L. O. Science 1926, 64, 306.
(2) Lange, B. Photoelements and Their Application, Reinhold, New York 1939.
(3) Olsen, L. C. Sol. Cells 1982, 7, 247.
(4) Rakhshani, A. E. Solid-State Electronics 1986, 29, 7.
(5) Pollack, G. P. and Trivich, D. J. Appl. Phys. 1975, 46, 163.
(6) Abdu, Y.; Musa, A. O. Bayero Journal of Pure and Applied Sciences 2009, 2, 8.
(7) Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998, 51, 305.
(8) Wijesundara, R. P.; Perera, L. D. R. D.; Jayasuriya, K. D.; Siripala W.; De Silva, K. T. L.; Samantilleke A. P.; Dharmadasa I. M. Sol. Energy Mater. Sol. Cells 2000, 61, 277.
(9) Fernando, C. A. N.; de Silver, P. H. C.; Wethasinha, S. K.; Dharmadasa, I. M.; Delsol, T.; Simmonds, M. C. Renew. energy 2002, 26, 521.
(10) Georgieva, V.; Ristov, M. J. Sol. Energy Mater. Sol. Cells 2002, 73, 67.
(11) Katayama, J.; Ito, K.; Matsuoka, M.; Tamaki, J. J. Appl. Electrochem. 2004, 34, 687.
(12) Tanaka, H.; Shimakawa, T.; Miyata, T.; Sato, H.; Minami, T. Thin solid films 2004, 469,80.
(13) Akimoto, K.; Ishizuka, S.; Yanagita, M.; Nawa, Y.; Paul, K. G.; Sakurai, T. Sol. Energy 2006, 80, 715.
(14) Izaki, M.; Mizuno, K.; Shinagawa, T.; Inaba, M.; Tasaka, A. J. Electrochem. Soc. 2006, 153, C668.
(15) Minami, T.; Miyata, T.; Ihara, K.; Minamino, Y.; Satoshi, T. Thin Solid Films 2006, 494, 47.
(16) Mittiga, A.; Salza, E.; Sarto, F.; Tucci, M.; Vasanthi, R. Appl. Phys. Lett. 2006, 88, 163502.
(17) Wijesundara, R. P.; Hidaka, M.; Koga, K.; Siripala, W. Thin solid films 2006, 500, 241.
(18) Longcheng, W.; Meng, T. Electrochem. Solid State Lett. 2007, 10, H248.
(19) Kunhee, H.; Meng, T. Sol. Energy Mater. Sol. Cells 2009, 93, 153.
(20) Yuhas, B. D.; Yang, P. J. AM. CHEM. SOC. 2009, 131, 3756.
(21) Xiang, C. X.; Kimball, G. M.; Grimm, R. L.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Energy Environ. Sci. 2011, 4, 1311.
(22) Chen, J.-W.; Perng, D.-C.; Fang, J.-F. Sol. Energy Mater. Sol. Cells 2011, 95, 2471.
(23) Wei, H. M.; Gong, H. B.; Wang, Y. Z.; Hu, X.; Chen, L.; Xu, H. Y.; Liu, P.; Cao, B. Q. Cryst. Eng. Comm. 2011, 13, 6065.
(24) Wei, H. M.; Gong, H. B.; Chen, L.; Zi, M.; Cao, B. Q. J. Phys. Chem. C 2012, 116, 10510.
(25) Chen, C.-C.; Chen, L.-C.; Lee, Y.-H. Adv. Condens. Matter Phys. 2012, 2012, 129139.
(26) Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202.
(27) Wang, X.; Li, R.; Fan, D. Nanoscale Res. Lett. 2011, 6, 614.
(28) Minami, T.; Nishi, Y.; Miyata, T.; Nomoto, J.-I. Appl. Phys. Express 2011, 4, 062301.
(29) Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, 20801.
(30) Golden, T. D.; Shumsky, M. G. ; Zhou, Y. ; Van Leeuwen, R. A.; Switzer, J. A.; Chem. Mater. 1996, 8, 2499.
(31) de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. J. Electrochem. Soc. 2000, 147, 486.
(32) Nakaoka, K.; Ueyama, J.; Ogura, K. J. Electrochem. Soc. 2004, 151, C661.
(33) Rai, B. P. Sol. Cells 1988, 25, 265.
(34) De Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. J. Electrochem. Soc. 2000, 147, 486.
(35) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Nano Lett. 2006, 6, 2095.
(36) Zhang, Y.-G.; Ma, L.-L.; Li, J.-L.; Yu, Y. Environ. Sci. Technol. 2007, 41, 6264.
(37) Engel, C. J.; Polson, T. A.; Spado, J. R.; Bell, J. M.; Fillinger, A. J. Electrochem. Soc. 2008, 155, F37.
(38) Qian, F.; Wang, G.; Li, Y. Nano Lett. 2010, 10, 4686.
(39) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
(40) Mahmoud M. A.; Qian, W.; El-Sayed, M. A. Nano Lett. 2011, 11 3285.
(41) Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Nat. Mater. 2011, 10, 456.
(42) Ponyatovskii, E. G.; Abrosimova, G. E.; Aronin, A. S.; Kulakov, V. I.; Kuleshov, I. V.; Sinitsyn V. V. Phys. Solid State 2002, 44, 852.
(43) Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O’Brien, S. J. Am. Chem. Soc. 2005, 127, 9506.
(44) Gou, L.; Murphy, C. J. Nano Lett. 2003, 3, 231.
(45) Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717.
(46) Li, X.; Gao, H.; Murphy, C. J.; Gou, L. Nano Lett. 2004, 4,1903.
(47) Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, 10356.
(48) Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773.
(49) Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. J. Phys. Chem. C 2007, 111, 1638.
(50) Yang, Z.; Chiang, C.-K.; Chang, H.-T. Nanotechnology 2008, 19, 025604
(51) Bao, H.; Zhang, W.; Shang, D.; Hua, Q.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. J. Phys. Chem. C 2010, 114, 6676.
(52) Hua, Q.; Shang, D.; Zhang, W.; Chen, K.; Chang, S.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. Langmuir 2011, 27, 665.
(53) Hua, Q.; Chen, K.; Chang, S.; Ma, Y.; Huang, W. J. Phys. Chem. C 2011, 115, 20618.
(54) Siegfried, M. J.; Choi, K.-S. Adv. Mater. 2004, 16, 1743.
(55) He, P.; Shen, X.; Gao, H. J. Colloid Interface Sci. 2005, 284, 510.
(56) Siegfried, M. J.; Choi, K.-S. Angew. Chem., Int. Ed. 2005, 117, 3282.
(57) Ng, C. H. B.; Fan W. Y. J. Phys. Chem. B 2006, 110, 20801.
(58) Xu, H.; Wang, W.; Zhu, W. J. Phys. Chem. B 2006, 110, 13829.
(59) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
(60) Liang, X.; Gao, L.; Yang, S.; Sun, J. Adv. Mater. 2009, 21, 2068.
(61) Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 6131.
(62) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261.
(63) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
(64) Zhang, Y.; Deng, B.; Zhang, Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
(65) Tan, Y. W.; Xue, X. Y.; Peng, Q.; Zhao, H.; Wang, T. H.; Li, Y. D. Nano Lett. 2007, 7, 3723.
(66) Hacialioglu, S.; Meng, F.; Jin, S. Chem. Commun 2012, 48, 1174.
(67) Lu, C. H.; Qi, L. M.; Yang, J. H.; Wang, X. Y.; Zhang, D. Y.; Xie, J. L.; Ma, J. M. Adv. Mater. 2005, 17, 2562.
(68) Sui, Y. M.; Fu, W. Y.; Zeng, Y.; Yang, H. B.; Zhang, Y. Y.; Chen, H.; Li, Y. X.; Li, M. H.; Zou, G. T. Angew. Chem., Int. Ed. 2010, 49, 4282.
(69) Chang, Y.; Teo, J. J.; Zeng, H. C. Langmuir 2005, 21, 1074.
(70) Teo, J. J.; Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369.
(71) Xu, H.; Wang, W. Angew. Chem., Int. Ed. 2007, 46, 1489.
(72) Zhang, L.; Wang, H. J. Phys. Chem. C 2011, 115, 18479.
(73) Ai, Z.; Zhang, L.; Lee, S.; Ho, W. J. Phys. Chem. C 2009, 113, 20896.
(74) Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871.
(75) Bardhan, R.; Grady, N. K.; Ali, T.; Halas, N. J. ACS Nano 2010, 4, 6169.
(76) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
(77) Rice, K. P.; Walker, Jr., E. J.; Stoykovich, M. P.; Saunders, A. E. J. Phys. Chem. C 2011, 115, 1793.
(78) Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Chem. Mater. 2011, 23, 2677.
(79) Zhang, L.; Blom, D. A.; Wang, H. Chem. Mater. 2011, 23, 4587.
(80) Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-J.; Ye, Z.-Z.; Fan, F.-R.; Ben, B.; Tian Z.-Q. J. Phys. Chem. C. 2012, 116, 4477.
(81) Yec, C. C.; Zeng, H. C. Chem. Mater. 2012, 24, 1917.
(82) Zhang, L.; Jing, H.; Boisvert, G.; He, J. Z.; Wang, H. ACS Nano 2012, 6, 3514.
(83) Braun, F. Annal. Phys. Chem. 1874, 153, 556.
(84) (a) Schottky, W. Naturwissenschaften 1938, 26, 843. (b) Schottky, W. Z. Phys. 1939, 113, 367. (c) Schottly, W. Z. Phys. 1942, 118, 539.
(85) Schroder, D. K. Semiconductor material and device characterization, 3rd ed.; Wiley Press: New Jersey, 2006.
(86) Sze, S. M. Physics of Semiconductor Devices, 2rd ed.; Wiley Press, New York, 1981.
(87) Fox, M. Optical Properties of Solids; Oxford University Press: New York, 2001.
(88) Maier, S. A. Plasmonic: Fundamentals and Applications; Springer Science Press:New York, 2007.
(89) Otto, A. Phys. 1968, 216, 398.
(90) Kretschmann, E.; Raether, H. Z. Naturf. A 1968, 23, 2135.
(91) Devaux, E.; Ebbesen, T. W.; Weeber, J.-C.; Dereux, A. Appl. Phys. Lett. 2003, 83, 4936.
(92) Bouhelier, A.; Wiederrecht, G. P. Opt. Lett. 2005, 30, 884.
(93) Mie, G. Ann. Phys. 1908, 25, 377.
(94) Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Academic: New York, 1969.
(95) Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley Interscience: New York, 1983.
(96) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
(97) Purcell, E. M.; Pennypacker, C. R. Astrophys. J. 1973, 186, 705.
(98) Moreno, E.; Erni, D.; Hafner, C. Vahldieck, R. J. Opt. Soc. A 2002, 19, 101.
(99) (a) Novotny, L.; Pohl, D. W.; Hecht, B. Opt. Lett. 1995, 20, 970. (b) Novotny, L.; Bian, R. X.; Xie, X. S. Phys. Rev. Lett. 1997, 79, 645.
(100) Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Nano Lett. 2007, 7, 3723.
(101) Chen, H.-Y; Yang, Y.-C.; Lin, H.-W.; Chang, S.-C; Gwo, S. Opt. Express 2008, 16, 13465.
(102) Jeon, J.; Floresca, H. C.; Kim, M. J. J. Vac. Sci. Technol. B 2010, 28, 549.
(103) Zhang, Z. Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L.-M. Appl. Phys. Lett. 2006, 88, 073102.
(104) Bai, X.; Golberg, D.; Bando, Y.; Zhi, C.; Tang, C. Mitome, M.; Kurashima, K. Nano Lett. 2007, 7, 632.
(105) Asthana, A.; Momeni, K.; Prasad, A.; Yap, Y. K.; Yassar, R. S. Appl. Phys. Lett. 2009, 95, 172106.
(106) Zhang, Z.; Yao, K.; Liu, Y.; Jin, C.; Liang, X.; Chen, Q.; Peng, L.-M. Adv. Funct. Mater. 2007, 17, 2478.
(107) Barber, D. J.; Freestone, I. C. Archaeometry 1990, 32, 33.
(108) Faraday, M. Philos. Trans. R. Soc. London 1857, 147, 145.
(109) Halas, N. J. Nano Lett. 2010, 10, 3816.
(110) Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, 2006.
(111) Heber, J. Nature 2009, 461, 720.
(112) Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner U. Nature 2009, 460, 1110.
(113) Qi, J.; Dang, X.; Hammond, P. T.; Belcher, A. M. ACS Nano 2011, 5, 7108.
(114) Caruso, F. Adv. Mater. 2001, 13, 11.
(115) Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Bibikova, O.; Terentyuk, G.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V.; Khlebtsov, N. G. ACS Nano 2011, 5, 7077.
(116) Mongin, D.; Juve, V.; Maioli, P.; Crut, A.; Del Fatti, N.; Vallee, F.; Sanchez-Iglesias, A.; Pastoriza-Santos, I.; Liz-Marzán, L. M. Nano Lett. 2011, 11, 3016.
(117) Levin, C. S.; Hofmann, C.; Ali, T. A.; Kelly, A. T.; Morosan, E.; Nordlander, P.; Whitmire, K. H.; Halas, N. J. ACS Nano 2009, 3, 1379.
(118) Zhang, J.; Tang, Y.; Lee, K., Ouyang, M. Science 2010, 327, 1634.
(119) Bardhan, R.; Grady, N. K.; Ali, T.; Halas, N. J. ACS nano 2010, 4, 6169.
(120) Zhang, L.; Blom, D. A.; Wang, Hui Chem. Mater. 2011, 23, 4587.
(121) Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-J.; Ye, Z.-Z.; Fan, F.-R.; Ren, B.; Tian, Z.-Q. J. Phys. Chem. C 2012, 116, 4477.
Chapter 2
(1) Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Nano Lett. 2007, 7, 3097.
(2) Read, C. G.; Steinmiller, E. M. P.; Choi, K.-S. J. Am. Chem. Soc. 2009, 131, 12040.
(3) Tao, A.; Sinsermsuksakul, P.; Yang, P. Nat. Nanotechnol. 2007, 2, 435.
(4) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570.
(5) Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 6131.
(6) Lu, W.; Liu, Q.; Sun, Z.; He, J.; Ezeolu, C.; Fang, J. J. Am. Chem. Soc. 2008, 130, 6983.
(7) Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66.
(8) Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Nano Lett. 2007, 7, 3723.
(9) Hernández-Ramírez, F.; Tarancón, A.; Casals, O.; Rodríguez, J.; Romano- Rodríguez, A.; Morante, J. R.; Barth, S.; Mathur, S.; Choi, T. Y.; Poulikakos, D.; Callegari, V.; Nellen, P. M. Nanotechnology 2006, 17, 5577.
(10) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
(11) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.
(12) Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106.
(13) Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871.
(14) Bao, H.; Zhang, W.; Shang, D.; Hua, Q.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. J. Phys. Chem. C 2010, 114, 6676.
(15) Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem.-Eur. J. 2010, 16, 14167.
(16) Chen, W.-T.; Yang, T.-T.; Hsu, Y.-J. Chem. Mater. 2008, 20, 7204.
(17) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737.
(18) Chen, H.-Y.; Yang, Y.-C.; Lin, H.-W.; Chang, S.-C.; Gwo, S. Opt. Express 2008, 16, 13465.
(19) Yang, W.-Y.; Rhee, S.-W. Appl. Phys. Lett. 2007, 91, 232907.
(20) Cheng, G.; Wang, S.; Cheng, K.; Jiang, X.; Wang, L.; Li, L.; Du, Z.; Zou, G. Appl. Phys. Lett. 2008, 92, 223116.
(21) Sheldon, M. T.; Trudeau, P.-E.; Mokari, T.; Wang, L.-W.; Alivisatos, A. P. Nano Lett. 2009, 9, 3676.
(22) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
(23) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
(24) Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. Adv. Mater. 2005, 17, 2562.
(25) Zheng, Z.; Huang, B.; Wang, Z.; Guo, M.; Qin, X.; Zhang, X.; Wang, P.; Dai, Y. J. Phys. Chem. C 2009, 113, 14448.
Chapter 3
(1) Zhang, J.; Tang, Y.; Lee, K.; Ouyang, M. Science 2010, 327, 1634.
(2) Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nat. Mater.2008, 7, 333–338.
(3) Tallury, P.; Payton, K.; Santra, S. Nanomedicine 2008, 3, 579.
(4) Piao, Y.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T. Adv. Funct. Mater. 2008, 18, 3745.
(5) Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. J. Am. Chem. Soc. 2003, 125, 588.
(6) Caruso, F. Adv. Mater. 2001, 13, 11.
(7) Levin, C. S.; Hofmann, C.; Ali, T. A.; Kelly, A. T.; Morosan, E.; Nordlander, P.; Whitmire, K. H.; Halas, N. J. ACS Nano 2009, 3, 1379.
(8) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 392.
(9) Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A. Nat. Mater. 2009, 8, 126.
(10) Liu, S.; Han, M.-Y. Chem. Asian J. 2010, 5, 36.
(11) Rice K. P.; Walker, E. J.; Jr., Stoykovich, M. P.; Saunders, A. E. J. Phys. Chem. C 2011, 115, 1793.
(12) Lu, Y.; Yin, Y.; Li, Z.-Y.; Xia, Y. Nano Lett. 2002, 2, 785.
(13) Mongin, D.; Juve, V.; Maioli, P.; Crut, A.; Del Fatti, N.; Vallee, F.; Sanchez-Iglesias, A.; Pastoriza-Santos, I.; Liz-Marzán, L. M. Nano Lett. 2011, 11, 3016.
(14) Kobayashit, Y.; Nonoguchi, Y.; Wang, L.; Kawai, T.; Tamai, N. J. Phys. Chem. C 2012, 3, 1111.
(15) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
(16) Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871.
(17) Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Chem. Mater. 2011, 23, 2677.
(18) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang. M. H. J. Am. Chem. Soc. 2012, 134, 1261.
(19) Yang, P. Nature 2012, 482, 41.
(20) Zhang, L.; Blom, D. A.; Wang, H. Chem. Mater. 2011, 23, 4587.
(21) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570.
(22) Chu, H.-C.; Kuo, C.-H.; Huang, M. H. Inorg. Chem. 2006, 45, 808.
(23) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
(24) Zhang, L.; Wang, H. ACS Nano 2011, 5, 3257.
(25) Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-.J; Ye, Z.-Z.; Fan, F.-R.; Ren, B.; Tian, Z.-Q. J. Phys. Chem. C 2010, 116, 4477.
(26) Zheng, Z.; Huang, B.; Wang, Z.; Guo, M.; Qin, X.; Zhang, X.; Wang, P.; Dai, Y. J. Phys. Chem. C 2009, 113, 14448.
(27) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.
(28) Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106.
(29) Lee, S.; Liang, C.-W.; Martin, L. W. ACS Nano 2011, 5, 3736.
(30) Read, C. G.; Steinmiller, E. M. P.; Choi, K.-S. J. Am. Chem. Soc. 2009, 131, 12040.
(31) Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem. Eur. J. 2010, 16, 14167.
(32) Lyu, L.-M.; Huang, M. H. J. Phys. Chem. C 2011, 115, 17768.
(33) Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Langmuir 2010, 26, 12307.
(34) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
(35) Kuo, C.-H.; Chu, Y.-T.; Song, Y.-F.; Huang, M. H. Adv. Funct. Mater. 2011, 21, 792.