研究生: |
謝馨儀 Hsieh, Hsin-Yi |
---|---|
論文名稱: |
雙面多功能奈米球之製造與特性分析應用於單一粒子追蹤與拉曼檢測 Fabrication and Characteristics of Dual-Faced Multifunctional Nanobeads for Single Particle Tracking and Raman Detection |
指導教授: |
曾繁根
Tseng, Fan-Gang 王本誠 Wang, Pen-Cheng 李超煌 Lee, Chau-Hwang |
口試委員: |
曾繁根
Tseng, Fan-Gang 王本誠 Wang, Pen-Cheng 李超煌 Lee, Chau-Hwang 饒達仁 Yao, Da-Jeng 楊重熙 Yang, Chung-Shi 王玉麟 Wang, Yuh-Lin 張恆雄 Chang, Hong-Shong 魏培坤 Wei, Pei-Kuen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 表面增強拉曼散射 、聚苯乙烯奈米球 、電漿蝕刻 、粒子追蹤 |
外文關鍵詞: | Surface enhanced Raman Scattering, Polystyrene nanoparticle, Plasma etching, Particle tracking |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於發展批次化製造可應用於標定癌細胞後投藥,並觀測細胞內分子層級變化之表面增強拉曼散射螢光奈米粒子。此奈米粒子系統建構於一容易取得、奈米至微米尺寸齊全、及包埋之螢光波段可選擇的聚苯乙烯奈米球上。此包埋螢光的奈米粒子,藉由聚苯乙烯本身的化學特性,在電漿環境下進行物理轟擊與化學反應處理,則可形成上半球面粗糙化及全球面羧基官能基分佈的結果。接著以電子束垂直沈積金膜於粒子上半球面,即可形成具備高增強係數之表面增強拉曼散射奈米螢光粒子。由於沈積金屬後,粒子上半粗糙球面與下半球面分別可與硫醇分子(-SH)及蛋白質分子的胺基 (-NH2),形成選擇性的金硫鍵(Au-S)與肽鍵(peptide)自組裝分子修飾反應。
實驗中利用聚苯乙烯奈米粒子陣列排球技術,將250 μL含1-10%直徑220奈米至920奈米的粒子溶液滴在4吋玻璃晶片上,再以三段式旋轉參數(400rpm/10s、800rpm/120s、3000rpm/2-5s),將粒子以單層最密排列的方式旋佈於4吋晶片上。接著的電漿處理程序,為了探討聚苯乙烯粒子表面粗糙形成的原因,實驗中選用了化學惰性的氬電漿及強化學活性的氧電漿,對含有不同表面羧基密度(0-14.7 carboxyl groups/nm2)的聚苯乙烯奈米粒子作處理。同時採用X射線光電子能譜(XPS)分析表面官能基的變化,另外以原子力顯微鏡(AFM)分析表面羧基密度與粗糙度的關係。因而推論粗糙表面源自於電漿環境下的選擇性蝕刻,即氧電漿改質純聚苯乙烯形成的羧基(或氬電漿環境下處理本身聚苯乙烯球修飾有的羧基),相對於苯乙烯本體具有較高鍵結能,而形成奈米遮罩分部於球體表面。在垂直的電漿轟擊下,而造成粒子上半球面粗糙結構的形成。除此之外,為了最佳化表面增強拉曼散射的能力,實驗中比較了100 μM若丹明6G(Rhodamine 6G)在632奈米的雷射光激發下的拉曼散射強度,於電漿處理並鍍上金膜後的奈米球陣列上。經由分析二次電子顯微鏡(SEM)影像、原子力顯微鏡影像、局部表面等離子共振(LSPR)光譜圖,各種試片的拉曼增強效應可整理為受以下三個因子影響:(1)粒子與臨近粒子間的電漿耦合效應,(2)奈米次結構於粒子表面的粗糙度,以及(3)奈米次結構間距離。而其中奈米次結構間距離主要決定了拉曼增強散射的能力,且增強效益為待測溶液不在奈米粒子上的10E6。
為了使此拉曼散射螢光粒子具備更多的應用性,實驗中選用了一個抗體(anti-CD44),選擇性修飾在粒子下表面羧基官能基上,使粒子得以辨識大部分癌細胞表面(例如子宮頸癌HeLa與乳癌MCF-7細胞) 過量表現的CD44表面跨膜糖蛋白,而使該粒子具備辨認癌細胞的能力。另外選用可修飾在金膜與胺基上的磺酸基丁二醯聯胺生物素化試劑(Sulfo-NHS-SS-biotin),由於該試劑的中的雙硫鍵(-SS-)可在細胞膜內環境被切斷,因而可作為釋放藥物的鍵結分子(linker)。實驗中以卵白素量子點 (streptavidin-QDs)接在該鏈結分子的生物素(biotin)上作多重修飾的相容性測試。並針對各種修飾順序比較此粒子辨認癌細胞的能力,及在細胞外測試雙硫鍵斷鍵的能力與時間。此經過修飾的表面增強拉曼散射螢光奈米粒子,會經由超音波振盪的方式從4吋基材上取下,均勻散佈在去離子水(DI water) 中保存,每片4吋基材可取得約10E10個粒子於2mL溶液中,且其純度可高達99%以上。該奈米粒子辨識癌細胞(HeLa與MCF-7)能力,呈現高達12倍的標記數量相對於在正常細胞(軟骨細胞chondrocyte) 上。在論文最末,初步驗證了本技術應用在奈米粒子胞吞動態追蹤及癌細胞治療診斷研究的潛力。成功展示200奈米的表面增強拉曼散射螢光奈米粒子,在長時間的共軛焦螢光顯微鏡三維追蹤實驗中,配合拉曼掃瞄成像(Raman mapping)感測生物分子的能力。
The purpose of this study is to develop a batch manufacturing approach to massively produce surface-enhanced Raman scattering (SERS) fluorescent nanoparticles, mushroom-like Au semishell fluorescent nanoparticle (AuFNMs), for a potential application of targeting cancer cells, delivering drug, and subsequently observing cell behavior via SERS detection of intracellular biomolecule. This nanoparticle system was established on commercial available polystyrene beads with full range of sizes (from tens of nanometer to micrometers in diameter) and many fluorescent specifications. Based on the chemical property of polystyrene, the fluorescent nanoparticle can be treated with surface roughness on the upper hemisphere and carboxyl groups on the entire surface through plasma ion bombardment and chemical oxidation. Followed by the electron-beam deposition of gold film on the upper hemisphere, the nanoparticle can perform as a SERS-active fluorescent bead with high enhancement factor. After the deposition of metal, thiol (-SH) molecules and the amine (-NH2) of protein molecules could be modified simultaneously and selectively onto the top gold surfaces and bottom carboxyl groups through Au-S and peptide bonds, respectively.
In the experiments, the technique of densely packed nanoparticle array was employed to obtain a monolayer distribution of polystyrene beads on a 4-inch glass wafer. A 250-μL droplet containing 1-10% polystyrene bead, ranging from 220 nm to 920 nm in diameter, was sufficient to cover the entire surface of 4-inch wafer by a three-step spin-coating, 400rpm/10s, 800rpm/120s, and 3000rpm/2-5s. The following plasma treatment process was processed under inert argon plasma and/or vigorous oxygen plasma for the investigation and comparison of surface roughness on polystyrene nanoparticles with different intrinsic carboxyl density (0-14.7 carboxyl groups/nm2). In the meanwhile X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to analyze the change of surface chemistry and the correlation coefficient between carboxyl group density and surface roughness, respectively. The results suggest that bare polystyrene bead surface can be oxidized with carboxyl groups under oxygen plasma treatment, and the higher bonding energy of the carboxyl groups play the role as nanomasks decorating on the surface of polystyrene. As a result, the upper hemisphere of the polystyrene beads were treated with corrugated surface due to the selective etching under vertical plasma ion bombardment. Besides, in order to optimize the SERS enhancement factor on the nanoparticles, various gold-coated and plasma-treated polystyrene bead arrays with 100 μM Rhodamine 6G solution were observed their Raman scattering intensities under 632 nm laser excitation. Raman intensity enhancement on a 20-nm gold coated nanocorrugated polystyrene bead array is summarized by three factors: (1) the effect of plasmonic coupling among neighboring particles, (2) the nanocorrugation-contributed roughness, and (3) the pitch size of nanocorrugations, through the analysis of SEM images, AFM height images, and LSPR signals. Among these factors, the pitch size of nanocorrugations (ranging from ~6 nm to ~12 nm on the surface of polystyrene beads) dominates the SERS enhancement, and the average enhancement factor can reach up to 10E6.
To equip the SERS fluorescent nanoparticles (AuFNMs) with more applications, an anti-CD44 antibody was selectively modified onto the carboxyl hemisphere for the recognition of overexpressive CD44 transmembrane glycoprotein on most cancer cells, such as HeLa and MCF-7 cells. A cleavable disulfide linker of Sulfo-NHS-SS-with biotin was chosen for the modification either on the gold film or on the primary amine for releasing drug in the cell intracellular environment, via the reduction of a disulfide bond (-SS-) to two thiols. In the experiments, streptavidin-linked QDots was modified onto the disulfide linker of Sulfo-NHS-SS-biotin for the compatibility testing of multiple modifications. Moreover, the cancer cell targeting ability was compared among AuFNMs with a variety of modification order, and the cleavage of disulfide bond was examined in the extracellular environment. The AuFNMs suspension, which was verified with >99% purity and uniformed particle size in a concentration of ~10E10 numbers/mL in 2-mL DI water, can be employed to target cell-surface overexpressive glycoproteins (CD44) on cancer cells and release the loads via cleaving the disulfide bonds in cytoplasm after endocytosis of 30 minutes. A 12-fold cancer targeting ability of our AuFNMs was achieved on HeLa cells when compared to a normal cell of chondrocyte. For the applications of 3D confocal particle tracking and Raman mapping, the ~200 nm AuFNMs demonstrate excellent long-lasting single-particle fluorescence and superior biomolecule sensing ability. This technique provides a potential platform for the research of cell endocytosis pathway and the cancer cell theranostics.
[1] Hsieh, H.Y.; Wang, P.C.; Wu, C.L.; Huang, C.W.; Chieng, C.C.; Tseng, F.G., Effective Enhancement of Fluorescence Detection Efficiency in Protein Microarray Assays: Application of a Highly Fluorinated Organosilane as the Blocking Agent on the Background Surface by a Facile Vapor-Phase Deposition Process. Anal. Chem. 2009, 81, 7908-7916.
[2] Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102-1106.
[3] Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.; Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S., Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles. Appl. Spectrosc. 2002, 56, 150-154.
[4] Doering, W. E.; Nie, S., Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B 2001, 106, 311-317.
[5] Gearheart, L. A.; Ploehn, H. J.; Murphy, C. J., Oligonucleotide Adsorption to Gold Nanoparticles: A Surface-Enhanced Raman Spectroscopy Study of Intrinsically Bent DNA. J. Phys. Chem. B 2001, 105, 12609-12615.
[6] Chaumet, P. C.; Rahmani, A.; Nieto-Vesperinas, M., Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy. Appl. Optics 2006, 45, 5185-5190.
[7] Yang, Z.; Li, Y.; Li, Z.; Wu, D.; Kang, J.; Xu, H.; Sun, M., Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. J. Chem. Phys. 2009, 130, 234705.
[8] Etchegoin, P. G.; Lacharmoise, P. D.; Ru, E. C. L., Influence of Photostability on Single-Molecule Surface Enhanced Raman Scattering Enhancement Factors. Anal. Chem. 2009, 2, 682-688.
[9] Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J., Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Lett. 2005, 5, 1569-1574.
[10] Ye, J.; Dorpe, P. V.; Roy, W. V.; Borghs, G.; Maes, G., Fabrication, Characterization, and Optical Properties of Gold Nanobowl Submonolayer Structures. Langmuir 2009, 25, 1822-1827.
[11] Lu, Y.; Liu, G. L.; Kim, J.; Mejia, Y. X.; Lee, L. P., Nanophotonic Crescent Moon Structures with Sharp Edge for Ultrasensitive Biomolecular Detection by Local Electromagnetic Field Enhancement Effect. Nano Lett. 2005, 5, 119-124.
[12] Ross, B. M.; Lee, L. P., Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology 2008, 19, 275201.
[13] Alexander, K. D.; Hampton, M. J.; Zhang, S.; Dhawan, A.; Xu, H.; Lopez, R., A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays. J. of Raman Spectrosc. 2009, 40, 2171-2175.
[14] Chen, G.; Wang, Y.; Yang, M.; Xu, J.; Goh, S. J.; Pan, M.; Chen, H., Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers. J. Am. Chem. Soc. 2010, 132, 3644-3645.
[15] Xie, J.; Zhang, Q.; Lee, J. Y.; Wang, D. I. C., The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications. ACS Nano 2008, 2, 2473-2480.
[16] Kumar, R.; Zhou, H.; Cronin, S. B., Surface-enhanced Raman spectroscopy and correlated scanning electron microscopy of individual carbon nanotubes. Appl. Phys. Lett. 2007, 91, 223105.
[17] Shen, X. S.; Wang, G. Z.; Hong, X.; Zhu, W., Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Phys. Chem. Chem. Phys. 2009, 11, 7450-7454.
[18] Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794-13803.
[19] Etchegoin, P. G.; Ru, E. C. L., A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079-6089.
[20] Wang, W.; Ruan, C.; Gu, B., Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2006, 567, 121-126.
[21] Kim, K.; Lee, H. B.; Park, H. K.; Shin, K. S., Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-Raman-scattering-based molecular sensors. J. Colloid Interface Sci. 2008, 318, 195-201.
[22] Wu, L. Y.; Ross, B. M.; Hong, S.; Lee, L. P., Bioinspired Nanocorals with Decoupled Cellular Targeting and Sensing Functionality. Small 2010, 6, 503-507.
[23] Bruce, R. L.; Engelmann, S.; Lin, T.; Kwon, T.; Phaneuf, R. J.; Oehrlein, G. S.; Long, B. K.; Willson, C. G.; Vegh, J. J.; Nest, D.; Graves, D. B.; Alizadeh, A., Study of ion and vacuum ultraviolet-induced effects on styrene- and ester-based polymers exposed to argon plasma. J. Vac. Sci. Technol. B 2009, 27, 1142-1155.
[24] Oates, T. W. H.; Shiratori, Y.; Noda, S., Two-Dimensional Combinatorial Investigation of Raman and Fluorescence Enhancement in Silver and Gold Sandwich Substrates. J. Phys. Chem. C 2009, 113, 9588-9594.
[25] Wen, X.; Yi, M.; Zhang, D.; Wang, P.; Lu, Y.; Ming, H., Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays. Nanotechnology 2011, 22, 085203.
[26] Yang, Z.L.; Li, Q.H.; Ren, B.; Tian, Z.Q., Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem. Commun. 2011, 47, 3909-3911.
[27] Wang, H.; Levin, C. S.; Halas, N. J., Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. J. Am. Chem. Soc. 2005, 127, 14992-14993.
[28] Lin, W.C.; Huang, S.H.; Chen, C.L.; Chen, C.C.; Tsai, D.; Chiang, H.P., Controlling SERS intensity by tuning the size and height of a silver nanoparticle array. Appl. Phys. A 2010, 101, 185-189.
[29] Guieu, V. r.; Talaga, D.; Servant, L.; Sojic, N. o.; Lagugné-Labarthet, F. o., Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array. J. Phys. Chem. C 2008, 113, 874-881.
[30] Wu, M.C.; Chou, Y.; Chuang, C.M.; Hsu, C.P.; Lin, J.F.; Chen, Y.F.; Su, W.F., High-Sensitivity Raman Scattering Substrate Based on Au/La0.7Sr0.3MnO3 Periodic Arrays. ACS Appl. Mater. Interfaces 2009, 1, 2484-2490.
[31] Yu, Q.; Braswell, S.; Christin, B.; Xu, J.; MWallace, P.; HengGong; Kaminsky, D., Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 2010, 21, 355301.
[32] Masson, J.F.; Gibson, K. F.; Provencher-Girard, A., Surface-Enhanced Raman Spectroscopy Amplification with Film over Etched Nanospheres. J. Phys. Chem. C 2010, 114, 22406-22412.
[33] Paul, S.; Pearson, C.; Molloy, A.; Cousins, M. A.; Green, M.; Kolliopoulou, S.; Dimitrakis, P.; Normand, P.; Tsoukalas, D.; Petty, M. C., Langmuir−Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures. Nano Lett. 2003, 3, 533-536.
[34] Min, W.L.; Jiang, P.; Jiang, B., Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures. Nanotechnology 2008, 19, 475604.
[35] Chen, M.H.; Chuang, Y.J.; Tseng, F.G., Self-masked high-aspect-ratio polymer nanopillars. Nanotechnology 2008, 19, 505301.
[36] Ma, L. L.; Feldman, M. D.; Tam, J. M.; Paranjape, A. S.; Cheruku, K. K.; Larson, T. A.; Tam, J. O.; Ingram, D. R.; Paramita, V.; Villard, J. W.; Jenkins, J. T.; Wang, T.; Clarke, G. D.; Asmis, R.; Sokolov, K.; Chandrasekar, B.; Milner, T. E.; Johnston, K. P., Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy. ACS Nano 2009, 3 (9), 2686-2696.
[37] Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N., In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles. ACS Nano 2010, 4 (2), 699-708.
[38] Karmakar, A.; Xu, Y.; Mahmood, M. W.; Zhang, Y.; Saeed, L. M.; Mustafa, T.; Ali, S.; Biris, A. R.; Biris, A. S., Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles. Journal of Materials Chemistry 2011, 21, 12761.
[39] Choi, K. Y.; Yoon, H. Y.; Kim, J.-H.; Bae, S. M.; Park, R.-W.; Kang, Y. M.; Kim, I.-S.; Kwon, I. C.; Choi, K.; Jeong, S. Y.; Kim, K.; Park, J. H., Smart Nanocarrier Based on PEGylated Hyaluronic Acid for Cancer Therapy. ACS Nano 2011, 5 (11), 8591-9.
[40] Shimoni, O.; Postma, A.; Yan, Y.; Scott, A. M.; Heath, J. K.; Nice, E. C.; Zelikin, A. N.; Caruso, F., Macromolecule Functionalization of Disulfide-Bonded Polymer Hydrogel Capsules and Cancer Cell Targeting. ACS Nano 2012, 6 (2), 1463-72.
[41] B. Li, L. Shang, M. S. Marcus, T. L. Clare, E. Perkins and R. J. Hamers, Small, 2008, 4, 795.
[42] N. M. Sirimuthu, C. D. Syme and J. M. Cooper, Chem. Comm., 2011, 47, 4099.
[43] S. Bauhuber, C. Hozsa, M. Breunig and A. Gopferich, Adv. Mater, 2009, 21, 3286.
[44] G. Saitoa, J. A. Swanson and K.-D. Leea, Adv. Drug Delivery Rev., 2003, 55, 199.
[45] K. Yum, S. Na, Y. Xiang, N. Wang and M.-F. Yu, Nano Lett., 2009, 9, 2193.
[46] K. Kim, O. A. Saleh, Nucl. Acids Res., 2009, 37, e136.
[47] M. Yue, J. C. Stachowiak, H. Lin, R. Datar, R. Cote, A. Majumdar, , Nano Lett., 2008, 8, 520.
[48] M. M. Ow Sullivan, J. J. Green and T. M. Przybycien, Gene Ther., 2003, 10, 1882.
[49] D. Naor, S. Nedvetzki, I. Golan, L. Melnik and Y. Faitelson, Crit. Rev. Cl. Lab. Sci., 2002, 39, 527.
[50] J. Li and B. Zhou, BMC Cancer, 2011, 11, 49.
[51] M. Murohashi, K. Hinohara, M. Kuroda, T. Isagawa, S. Tsuji, S. Kobayashi, K. Umezawa, A. Tojo, H. Aburatani and N. Gotoh, Br J Cancer, 2009, 102, 206.
[52] K. K. Upadhyay, A. N. Bhatt, A. K. Mishra, B. S. Dwarakanath, S. Jain, C. Schatz, J.-F. Le Meins, A. Farooque, G. Chandraiah, A. K. Jain, A. Misra and S. Lecommandoux, Biomaterials, 2010, 31, 2882.
[53] Campbell, C. T. & Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28, 2380-2392, doi:10.1016/j.biomaterials.2007.01.047 (2007).
[54] Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 23, 1294-1301, (2005).
[55] Pohanka, M. & Skládal, P. Electrochemical biosensors - principles and applications Journal of APPLIED BIOMEDICINE 6, 57-64 (2008).
[56] Bakker, E. Electrochemical Sensors. Analytical Chemistry 76, 3285-3298, doi:10.1021/ac049580z (2004).
[57] http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm
[58] M. Fleischmann, P. J. Hendra, A. J. Mcquillan: Chem. Phys. Lett. 26, 163 (1974)
[59] D. L. Jeanmaire, R. P. Van Duyne: J. Electroanal. Chem. Interf. Electrochem.84, 1 (1977)
[60] G. Srinivasan, Vibrational Spectroscopic Imaging for Biomedical Applications ( McGraw-Hill, New York, 2010)
[61] Kwan Kim, Hyang Bong Lee, Jeong-Yong Choi, and Kuan Soo Shin., Silver-Coated Dye-Embedded Silica Beads: A Core Material of Dual Tagging Sensors Based on Fluorescence and Raman Scattering, ACS Applied Materials & Interfaces 2011 3 (2), 324-330.
[62] Chang, D. C. & Reese, T. S. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical Journal 58, 1-12, doi:10.1016/s0006-3495(90)82348-1 (1990).
[63] Weaver, J. C. & Chizmadzhev, Y. A. Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics 41, 135-160, doi:10.1016/s0302-4598(96)05062-3 (1996).
[64] DeBruin, K. A. & Krassowska, W. Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential. Biophysical Journal 77, 1213-1224 (1999).
[65] Ryttsén, F. et al. Characterization of Single-Cell Electroporation by Using Patch-Clamp and Fluorescence Microscopy. Biophysical Journal 79, 1993-2001 (2000).
[66] Zhang, S., Li, J., Lykotrafitis, G., Bao, G. & Suresh, S. Size-Dependent Endocytosis of Nanoparticles. Advanced Materials 21, 419-424, doi:doi:10.1002/adma.200801393 (2009).
[67] Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical journal 377, 159-169 (2004).
[68] Shen, Y. M. et al. Gene transfer: DNA microinjection compared with DNA transfection with a very high efficiency. Molecular and Cellular Biology 2, 1145-1154, doi:10.1128/mcb.2.9.1145 (1982).
[69] Nakanishi, A., Guan, L., Kane, R. R., Kasamatsu, H. & Hawthorne, M. F. Toward a cancer therapy with boron-rich oligomeric phosphate diesters that target the cell nucleus. Proceedings of the National Academy of Sciences 96, 238-241, doi:10.1073/pnas.96.1.238 (1999).
[70] Liu, X., Kim, K., Zhang, Y. & Sun, Y. Nanonewton Force Sensing and Control in Microrobotic Cell Manipulation. The International Journal of Robotics Research, doi:10.1177/0278364909340212 (2009).
[71] Han Zhang, S.-W. et al. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine : nanotechnology, biology, and medicine 4, 215-225 (2008).
[72] Yum, K., Yu, M.-F., Wang, N. & Xiang, Y. K. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochimica et Biophysica Acta (BBA) - General Subjects 1810, 330-338, doi:10.1016/j.bbagen.2010.05.005 (2011).
[73] Chen, X., Kis, A., Zettl, A. & Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proceedings of the National Academy of Sciences 104, 8218-8222, doi:10.1073/pnas.0700567104 (2007).
[74] Louit, G., Asahi, T., Tanaka, G., Uwada, T. & Masuhara, H. Spectral and 3-Dimensional Tracking of Single Gold Nanoparticles in Living Cells Studied by Rayleigh Light Scattering Microscopy. The Journal of Physical Chemistry C 113, 11766-11772, doi:10.1021/jp9018124 (2009).
[75] Michalet, X. et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 307, 538-544, doi:10.1126/science.1104274 (2005).
[76] 許慈軒, 廖唯昱, 王俊杰, 蕭建隆 & 李超煌. 超解析率明視野顯微術的生醫應用 物理雙月刊 29, 1019-1028 (2007).
[77] Wang, C.-C., Liang, C.-P. & Lee, C.-H. Three-dimensional nanoparticle tracking and simultaneously membrane profiling during endocytosis of living cells. Applied Physics Letters 95, 203702 (2009).
[78] Toprak, E., Balci, H., Blehm, B. H. & Selvin, P. R. Three-Dimensional Particle Tracking via Bifocal Imaging. Nano Letters 7, 2043-2045, doi:10.1021/nl0709120 (2007).
[79] Lin, Y.-Y., Yao, D.-J. & Tseng, F.-G. in Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on Xiamen, China. 199-202.
[80] Sakai, T., Takeoka, Y., Seki, T. & Yoshida, R. Organized Monolayer of Thermosensitive Microgel Beads Prepared by Double-Template Polymerization. Langmuir 23, 8651-8654, doi:10.1021/la700448t (2007).
[81] Cheung, C. L., Nikolić, R. J., Reinhardt, C. E. & Wang, T. F. Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17, 1339-1343, doi:10.1088/0957-4484/17/5/028 (2006).
[82] Guruvenket, S., Rao, G. M., Komath, M. & Raichur, A. M. Plasma surface modification of polystyrene and polyethylene. Applied Surface Science 236, 278-284, doi:10.1016/j.apsusc.2004.04.033 (2004).
[83] Mahfoudh, A., Barbeau, J., Moisan, M., Leduc, A. & Séguin, J. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Applied Surface Science 256, 3063-3072, doi:10.1016/j.apsusc.2009.11.074 (2010).
[84] Partouche, E. & Margel, S. Redox graft polymerization of vinylic monomers on ozone-activated poly(styrene-divinylbenzene) microspheres of narrow size distribution. New Journal of Chemistry 32, 306-316 (2008).
[85] Wang, P.-C., Venancio, E. C., Sarno, D. M. & MacDiarmid, A. G. Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media. Reactive and Functional Polymers 69, 217-223, doi:10.1016/j.reactfunctpolym.2008.11.002 (2009).
[86] Sanderson, R. T. Chemical bonds and bond energy [by] R. T. Sanderson. (Academic Press, 1971).
[87] Masson, J.-F., Gibson, K. F. & Provencher-Girard, A. Surface-Enhanced Raman Spectroscopy Amplification with Film over Etched Nanospheres. The Journal of Physical Chemistry C 114, 22406-22412, doi:10.1021/jp106450y (2010).
[88] Jain, P. K., Huang, W. & El-Sayed, M. A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Letters 7, 2080-2088, doi:10.1021/nl071008a (2007).
[89]Hsieh, H.-Y. et al. Au-Coated Polystyrene Nanoparticles with High-Aspect-Ratio Nanocorrugations via Surface-Carboxylation-Shielded Anisotropic Etching for Significant SERS Signal Enhancement. The Journal of Physical Chemistry C 115, 16258-16267, doi:10.1021/jp2012667 (2011).
[90] Cho, H.-J. et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 32, 7181-7190, doi:10.1016/j.biomaterials.2011.06.028 (2011).
[91] Grogan, S. P. et al. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatism 56, 586-595, doi:10.1002/art.22408 (2007).
[92] Chow, G., Knudson, C. B. & Knudson, W. Expression and cellular localization of human hyaluronidase-2 in articular chondrocytes and cultured cell lines. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 14, 849-858 (2006).
[93] Domenici, F., Bizzarri, A. R. & Cannistraro, S. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. International journal of nanomedicine 6, 2033-2042, doi:10.2147/IJN.S23845 (2011).