研究生: |
張甫任 |
---|---|
論文名稱: |
質子傳送-焦磷酸水解酶之不同物種間的分子分析與特性 Molecular Analysis and Characterization of H+-translocating Pyrophosphatase from Different Organisms |
指導教授: | 潘隆榮 |
口試委員: |
張晃猷
張文綺 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 質子傳送焦磷酸水解酶 |
外文關鍵詞: | proton pyrophosphatase |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子傳送-焦磷酸水解酶,是一種利用水解無機小分子—焦磷酸做為能量的來源,來驅動質子通過細胞膜的質子傳送幫浦。在這研究當中,我們建構出質子傳送-焦磷酸水解酶的表現載體,並利大腸桿菌為宿主去最佳化表現出三種細菌(Leptospira biflexa, Leptospira shermani, and Thermotoga maritima)中鑲嵌在膜上的焦磷酸水解酶,以利往後的分析實驗,像FRET、定點取代突變。首先,我們先測定不同株質子傳送-焦磷酸水解酶中的焦磷酸水解活性、傳送質子的能力、及質子偶合效率。再者,我們測量了一些常見的離子(K+、Ca2+、Na+、F-)在不同株質子傳送-焦磷酸水解酶中的影響。添加鈣離子、鈉離子、氟離子及抽離鉀離子,皆會造成三種焦磷酸水解酶某種程度上質子水解活性的下降。最後,我們收集和彙整每株焦磷酸水解酶的功能和特性,並建立一個對往後研究可輔助的系統。
H+-translocating inorganic pyrophosphatase (H+-PPase; EC 3.6.1.1) is a member of proton pumps that utilizes the hydrolysis of inorganic pyrophosphate (PPi) as energy source to pump protons across membranes. In this work, we have coloned H+-PPases into expression vector and tested the heterological expression of three integral membrane pyrophosphatases, all from bacterial sources, in Escherichia coli: Leptospira biflexa (LbH+-PPase), Leptospira shermani (LsH+-PPase), and Thermotoga maritima (TmH+-PPase), to obtain optimal expression level for further analysis, such as FRET、Site-directed mutagenesis. First, The PPi hydrolysis activities, proton translocations, and coupling efficiencies of the H+-PPases were determined from each H+-PPase. Furthermore, the effects of each common ions (K+, Ca2+, Na+, F-) added to these H+-PPases were measured, respectively. Addition of Ca2+, Na+, F- and deletion of K+ would diminish the PPi hydrolysis activities in LbH+-PPase, LsH+-PPase, and TmH+-PPase to a certain extent. Finally, we collected and organized the function and characterization of each H+-PPase to establish a workable system for further research of this proton pumping enzyme.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248- 254
Belogurov GA, Lahti R (2002) A lysine substitute for K+: A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277, 49651-49654
Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131, 676-683
Drozdowicz YM, Rea PA (2001) Vacuolar proton pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6, 206–211
Fiske CH, SubbaRow Y (1925) The Colorimetric Determination of Phosphorus. J Biol Chem 66, 375–400
Gordon-Weeks R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol 111, 195-202
Ginsburg H (2002) Abundant proton pumping in Plasmodium falciparum, but why? Trends Parasitol 18, 483–486
Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60, 41-50
Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH, Lee CH, Liu PF, Chang WC, Wang YK, Chien LF, Pan RL (2007) Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1767, 965-73
Ikeda M, Rahman M. H, Moritani C, Umami K, Tanimura Y, Akagi R, Tanaka Y, Maeshima M, Watanabe, Y (1999) A vacuolar H+-pyrophosphatase in Acetabularia acetabulum: Molecular cloning and comparison with higher plants and a bacterium. J Exp Bot 50, 139-140
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5
López-Marqués RL, Pérez-Castiñeira JR, Losada M, Serrano A (2004) Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics. J Bacteriol 186, 5418-26
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating
pyrophosphatase. Nature 484, 399–403
Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196, 11-7
Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465, 37-51
McIntosh MT, Drozdowicz YM, Laroiya K, Rea PA, Vaidya AB (2001) Two classes of plant-like vacuolar-type H(+)-pyrophosphatases in malaria parasites.
Mol Biochem Parasitol 114, 183-95.
Malinen AM, Belogurov GA, Baykov AA, Lahti R (2007) Na+-pyrophosphatase: a novel primary sodium pump. Biochemistry 46, 8872-8
Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276, 7654-60
Rea PA, Britten CJ, Jennings IR, Calvert CM, Skiera LA, Leigh RA, and Sanders D (1992) Regulation of vacuolar H+-pyrophosphatase by free calcium. Plant Physiol 100, 1706-1715
Rea PA, and Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44, 157-180
Serrano A, Pérez-Castiñeira JR, Baltscheffsky M, Baltscheffsky H (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59, 76-83.
Yazaki Y, Asukagawa N, Ishikawa Y, Ohta E, and Sakata M (1988) Estimation of cytoplasmic free Mg2+ levels and phosphorylation potentials in mung bean root tips by in vivo 31P NMR spectroscopy. Plant Cell Physiol 29, 919-924
Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. J Biol Chem 272, 22340-22348