簡易檢索 / 詳目顯示

研究生: 劉軍廷
Liu, Chun Ting
論文名稱: 光電化學生物燃料電池應用於產電產氫
Photoelectrochemical Biofuel Cells for Electricity and Hydrogen Production
指導教授: 洪哲文
Hong, Che Wun
口試委員: 包淳偉
Pao, Chun Wei
張博凱
Chang, Bor Kae
王偉中
Wang, Wei Chung
董瑞安
Doong, Ruey An
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 120
中文關鍵詞: 密度泛函理論氧化鋅二氫卟吩衍生物[鐵鐵]產氫酵素鈣鈦礦反應速率常數
外文關鍵詞: density functional theory, ZnO, chlorin derivatives, [Fe-Fe] hydrogenase, perovskite, reaction rate constants
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究首先利用密度泛函理論來分析設計不同的光電陽極材料,了解其在光電化學燃料電池中的電子傳遞過程。使用量子計算分析方法,研究不同奈米結構光電陽極、生物染料和電解質之間的電子傳遞。光電陽極使用氧化鋅結構,原因為氧化鋅在工業界具有較低的成本,高染料吸附率以及高材料可變性。氧化鋅奈米結構分為奈米線,奈米管兩種結構,計算其基態能量可以得到穩定最佳化結構。模擬結果發現氧化鋅奈米管具有較低的導帶,可以成功將矢車菊花青素(cyanidin)、葉綠素a (chlorophyll a)及其衍生分子二氫卟吩(chlorin)染料激發後的以電子傳遞到氧化鋅奈米管光電陽極。
    研究第二部分研究葉綠素a (chlorophyll a)及其衍生分子二氫卟吩(chlorin)在光電化學燃料電池中影響其產電效率的主要因素。同樣利用第一原理計算,以密度泛函理論搭配B3LYP(Becke, Lee-Yang-Parr), CIS (configuration interaction with singles)交換相關泛函和6-31G基組,經由量子化學計算照光光譜以及電子軌域等,來預測其整體光電性能。置換二氫卟吩的中心金屬原子可以得到不同的光電性質,包含中心金屬原子和周圍氮原子的電負度差異。電負度可以影響電子雲的分布情形,進而影響照光光譜的吸收範圍。故使用不同的中心金屬原子,可以調整染料的吸收頻率。
    研究最後利用鈣鈦礦材料當作光電化學燃料的陰極,並分析其產氫效能和鈣鈦礦中的電子傳遞。使用密度泛函理論計算分析鈣鈦礦陰極與[鐵-鐵]產氫酵素的電子密度、分態密度(PDOS)、電子雲和之間的電子傳遞。結果顯示鈣鈦礦陰極材料可以成功有效製造氫氣。電子雲從鈣鈦礦結構中的氨(NH3)有機分子傳遞到產氫酵素的鐵原子之上。研究最後使用RRKM理論計算產氫酵素在不同溫度下的反應速率常數,其結果與文獻實驗的數值相同。


    This thesis first employed the density functional theory (DFT) to evaluate the effect of different photoanode designs on the electron transport in photoelectrochemical biofuel cells. The electron transfer between different nano structures of the photoanode, various sensitizers, and bio-electrolytes are analyzed via this computational quantum mechanics technique. The photoanode material used zinc oxide semiconductors, which could have a great potential in many ways including cost reduction, higher dye absorption ability and feasibility in the industry. Several molecular models, such as ZnO nanowires, ZnO nanotubes, and some novel biological pigments have been set up using minimum energy principles. Simulation results reveal that ZnO nanotubes possess lower conduction bands which potentially easier to transfer electrons from biopigments (e.g., chlorin, chlorophyll a and cyanidin) to the anode. As the preliminary conclusion, this first-principles technique is able to determine the photoelectrochemical properties of nano designs and screen different novel design ideas.
    Secondly, it is intended to find out the main factors that affect the power conversion efficiency of chlorin derivatives. By employing the first principles calculation again with density functional theory (DFT) plus hybrid exchange-correlation functional B3LYP, CIS and 6-31G basis set, this research calculated the photoelectronic properties, such as energy gaps, molecular orbital and UV/VIS absorption spectroscopy, of chlorin derivatives. The chlorin was used as a basic structure and the central ring was substituted by different metals. The difference in electronegativity between the central metal ion and the adjacent nitrogen atoms causes changes in distribution of electron clouds, which indirectly affect the molecule absorbance magnitude in ultraviolet and long wavelength range. By alternating the central metals with different electronegativities, the absorption spectra can be controlled.
    Finally, this research focused on the electron transmitting path and the reaction rate at the perovskite cathode of the photoelectrochemical cell for hydrogen production. The field of electron density, projected density of states (PDOS), electron distribution and electron transfer path between the [Fe-Fe] hydrogenase and the peroskite cathode can be obtained. Simulation results reveal that the perovskite cathode is better than traditional cathodes for hydrogen production. Before transmission to the [Fe-Fe] hydrogenase, electron clouds mainly aggregate at the periphery of NH3 organic molecules. Then, electrons are transmitted to the hydrocarbon structural chain, finally reaching Fe atoms. Rice, Ramsperger, Kassel and Marcus (RRKM) theory was used to predict the reaction rates at different temperatures. It was found that the reaction rates coincide perfectly with the experimental results from other literatures. This research provides more physical insight into the electron transfer mechanism during the hydrogen production process. It also proves that photoelectrochemical biofuel cells can play the role as a dye sensitized solar cell during daytime, work as a biofuel cell in the evening. Also they can be designed as a part of hydrogen production system during day and night.

    Contents Abstract II 摘要 IV Contents V Chapter 1 Introduction 1 1.1 Development of Photoelectrochemical Biofuel Cells 1 1.1.1 Development of Photoelectrochemical Cells 1.1.2 Development of Biofuel Cells 4 1.1.3 Photoelectrochemical Biofuel Cells 6 1.2 Objectives 8 1.3 Literature Survey 10 1.3.1 ZnO Photoanode Solar Cell 10 1.3.2 Dyes and Chlorophyll Derivatives 11 1.3.3 Perovskite Structure 12 1.3.4 Hydrogen Production 13 Chapter 2 Computational Quantum Mechanics Methodology 15 2.1 First Principles 15 2.2 Density Functional Theory (DFT) 16 2.2.1 Hohenberg-Kohn Theorem 16 2.2.2 Kohn-Sham systems 17 2.2.3 Exchange & Correlation Term 18 2.2.4 Self-Consistent Field 19 2.2.5 BLYP Theory 21 2.2.6 Basis Set 21 2.2.7 Pseudopotential 22 2.3 Local Density Functional Calculation on Molecule (DMol3) 23 2.4 Green’s Function Theory 25 2.5 Rice-Ramsperger-Kassel-Marcus (RRKM) Theory 27 Chapter 3 Modeling and Simulation Results 30 3.1 Methodology 30 3.2 Molecular Modeling 34 3.3 ZnO Photoanode Nanostructures Design 46 3.3.1 ZnO Nanostructures 46 3.3.2 Biomaterials 55 3.3.3 ZnO Nanostructures & Biomaterials 56 3.3.4 Biopigments Absorbed on ZnO Nanotubes 59 3.4 Dyes and Electrolytes 66 3.4.1 Quantum Analysis of Chlorophyll-A Derivatives 3.4.2 Electronegativity 70 3.4.3 Proton affinities 71 3.4.4 Reorganization energy 72 3.5 Cathodes and Hydrogen Production 74 3.5.1 Quantum Analysis of [FeFe] Hydrogenase 76 3.5.2 VO2 Cathode 79 3.5.3 Perovskite Cathode 82 3.5.4 Reaction Rates 89 Chapter 4 Fabrication and Experimental 93 4.1 Reagents and Materials 93 4.2 Instrumentation 97 4.3 Preparation of Photochemical Biofuel Cells 98 4.4 Measurement and Results 99 Chapter 5 Conclusions and Future Work 102 5.1 ZnO Photoanode Nanostructures Design 102 5.2 Quantum Analysis of Chlorophyll-a Derivatives 103 5.3 Cathode Design and Chemical Kinetics at the Enzymatic Fe-Fe Hydrogenase 104 5.4 Future Work Suggestions 105 References 102  

    References
    [1] B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, p. 737, (1991).
    [2] T. Chen, S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H.H. Kim, A. Heller, “A miniature biofuel cell”, J. Am. Chem. Soc., 123, p. 8630, (2001).
    [3] M. Minson, M. T. Meredith, A. Shrier, F. Giroud, D. Hickey, D. T. Glatzhofer, S. H. Minteer, “High performance glucose/O2 biofuel cell: effect of utilizing purified laccase with anthracene-modified multi-walled carbon nanotubes”, J. Electrochem. Soc., 159, p. 166, (2012).
    [4] A. T. Yahiro, S. M. Lee, D. O. Kimble, “Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies”, Biochim. Biophys. Acta, , 88, p. 375, (1964).
    [5] G. Tayhas, R. Palmore, G. M. Whitesides, “Microbial and enzymatic biofuel cells”, J. Am. Chem. Soc., 566, p. 271, (1994).
    [6] L. Garza, G. Jeong, P. A. Liddell, T. Sotomura, T. A. Moore, A. L. Moore, D. Gust, “Enzyme-based photoelectrochemical biofuel cell”, J. Phys. Chem. B, 107, p. 10252, (2003).
    [7] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, p. 37-38 (1972).
    [8] From the World Wide Web: http://nsl.caltech.edu/energy
    [9] C.C. Chen, W.D. Jehng, L.L. Li and W.G. Diau, “Enhanced efficiency of dye-sensitized solar cells using Anodic titanium oxide nanotube arrays”, J. Electrochem. Soc., 156, p. C304-C312 (2009).
    [10] 陳偉暉(洪哲文指導), “量態分子動力分析奈米管光電化學太陽電池性能”,國立清華大學動力機械系博士論文, 5/2010.
    [11] T. Chen, S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H.H. Kim, and A. Heller, “A miniature biofuel cell”, J. Am. Chem. Soc., 123, p.8630 (2001).
    [12] M. Minson, M. T. Meredith, A. shrier, F. Giroud, D. Hickey, D. T. Glatzhofer and S. H. Minteer, “High performance glucose/O2 biofuel cell: effect of utilizing purified laccase with anthracene-modified multi-walled carbon nanotubes”, J. Electrochem.Soc., 159, p.166 (2012).
    [13] A. T. Yahiro, S. M. Lee, D. O. Kimble, “Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies”, Biochim. Biophys. Acta, 88, p.375 (1964).
    [14] G. Tayhas R. Palmore and G. M. Whitesides, “Microbial and enzymatic biofuel cells”, J. Am. Chem. Soc., 566, p.271 (1994).
    [15] 邱創斌(洪哲文指導), “量子力學與分子動力分析酵素生物燃料電池性能影響因子”,國立清華大學動力機械系博士論文, 1/2010.
    [16] L. Garza, G. Jeong, P. A. Liddell, T. Sotomura, T. A. Moore, A. L. Moore and D. Gust, “Enzyme-Based Photoelectrochemical Biofuel Cell”, J. Phys. Chem. B, 107, p.10252 (2003).
    [17] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, “First principles methods using CASTEP”, Zeitschrift fuer Kristallographie, 220, p. 567-570 (2005).
    [18] K. E. Riley, M. Pitoňák, P. Jurečka, P. Hobza, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, = M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.
    [19] Y.W. Wong, S. Sasaki, T. Zhuang, H. Tamiaki, J.P. Zhang, T. Ikeuchi, Z.Hong, J.Kido and X.F. Wang, “Dicyano-functionalized chlorophyll derivatives with ambipolar characteristic for organic photovoltaics”, Org. Electron., 14, p. 1972-1979 (2013).
    [20] S. Wei, Y. Shao, X. Shi, X. Lu, K. Li, Z. Zhao, C. Guo, H. Zhu and W. Guo, “Heteroleptic Cu(I) complexes integrating functionalized chromophores for dye-sensitized solar cells: An in-depth analysis of electronic structure, spectrum, excitation, and intramolecular electron transfer”, Org. Electron., 29, p.142-150 (2016).
    [21] H. Gerischer, H. Tributsch, Ber. Bunsenges, “Electrochemical studies on the mechanism of sensitization and supersensitization of zin oxide single crystals”, Phys, Chem., 73, p.251 (1969).
    [22] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell”, Nature, 261, p. 402-403 (1976).
    [23] G. H. Schoenmakers, D. Vanmaekelbergh and J. J. Kelly, “Study of Carge Carrier Dynamics at Illumicated Photoanodes”, J. Phys. Chem., 100, p. 3215-3220 (1996).
    [24] M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, H.Yanagida, “Dye Sensitization and Surface Structures of Semiconductor Electrodes”, Ind. Eng. Chem. Prod. Res. Dev., 19, pp. 415–421 (1980).
    [25] T. Miyasaka, T. Watanabe, A. Fujishima, K. Honda, “Highly effiicent quantum conversion at chlorophylly a–lecithin mixed monolayer coated electrodes”, Nature, 277, p.638 – 640 (1979).
    [26] Minami, Nobutsugu, Watanabe, Tadashi, Fujishima, Akira, Honda, Ken-ichi, “Photoelectrochemical study on copper phthalocyanine films”, Ber Bunsenges Phys Chem , 83, p.476-481 (1979).
    [27] N. Alonso-Vante, V.M. Beley, P. Chartier and V. Ern., “Photosensibilisation de semi-conducteurs ceramiques par des colorants organiques et des complexes de métaux de transition”, Rev. Phys. Appl., 16, p. 5 (1981).
    [28] K. Murakoshi, S. Yanagida, M. Capel, E.W. Castner, “Nanostructured materials, interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters”, Am. Chem. So. Publishers (1997).
    [29] N. Alonso-Vante, J.F. Nierengarten, J.P. Sauvage, “Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex”, Dalton Trans, p.1649 (1994).
    [30] Bedja, I. , Kamat, P.V.b , Hua, X.c , Lappin, A.G.c , Hotchandani, S.a “Photosensitization of nanocrystalline ZnO films by bis (2,2′-bipyridi e)(2,2′-bipyridine-4,4′-di arboxylic acid) ruthenium(II)”, Langmuir, 13, p.2398-2403 (1997).
    [31] G.Redmond, D, Fitzmaurize, M. Gratzel, Chem. Mater., “Visible light sensitization by cis-bis(thiocyanato)bis (2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques”, Chemistry of Materials, 6, p.686 (1994).
    [32] H. Rensmo, K. Keis, H. Lindstro1m, S. So1dergren, A. Solbrand, A. Hagfeldt, and S.-E. Lindquist, “High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes”, J. Phys. Chem., 101, p.2598-2601 (1997).
    [33] A. Mishra, M. K. R. Fischer and P. Bäuerle, “Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules”, Angew. Chem. Int. Ed, 48, p. 2474-2499 (2009).
    [34] S. Hao, J. Wu, Y. Huang and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell”, Solar Energy, 80, p. 209-214 (2006).
    [35] H. Chang, H. M. Wu, T. L. Chen, K. D. Huang, C. S. Jwo and Y. J. Lo, “Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea” Journal of Alloys and Compounds, 495, p. 606-610 (2010).
    [36] X. F. Wang, O. Kitao, E. Hosono, H. Zhou, S. I. Sasaki, and H. Tamiaki, “TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion”, J. of Photochem. and Photobio., 210, p.145-152 (2010).
    [37] X. F. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao, H. Zhou and S. I. Sasaki, “Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes”, Langmuir, 26, p.6320-6327 (2010).
    [38] A. Kay and M. Grätzel, “Artificial photosynthesis. 1. photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins”, J. Phys. Chem, 97, p.6272-6277 (1993).
    [39] M. K. Nazeeruddin, R. Humphry-Baker, D. L. Officer, W. M. Campbell, A. K. Burrell, and M. Grätzel, “Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity”, Langmuir, 20, p.6514-6517 (2004).
    [40] X. F. Wang and H. Tamiaki, “Cyclic tetrapyrrole based molecules for dye-sensitized solar cells”, Energy Environ. Sci., 3, p.94-106 (2010).
    [41] Park, N. G., “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell”, J. Phys. Chem. Lett., 4, p.2423 (2013).
    [42] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, p.6050 (2009).
    [43] Bisquert, J., “The swift surge of perovskite photovoltaics”, J. Phys. Chem. Lett., 4, p.2597 (2013).
    [44] Chung, I., Lee, B., He, J., Chang, R. P. H., Kanatzidis, M. G., “All-solid-state dye-sensitized solar cells with high efficiency”, Nature, 485, p.486–489 (2012).
    [45] Eustathios S. Kikkinides, “Design and optimization of hydrogen storage units using advanced solid materials: General mathematical framework and recent developments”, Comput. Chem. Eng., 35, p.1923-1936 (2011).
    [46] Carroll, M. E., Barton, B. E., Rauchfuss, T. B., Carroll, P. J., “Synthetic Models for the Active Site of the [FeFe]-Hydrogenase: Catalytic Proton Reduction and the Structure of the Doubly Protonated Intermediate”, J. Am. Chem. Soc., 134, p.18843–18852 (2012).
    [47] Tard, C., Pickett, C. J., “Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds”, Chem. Rev,. 109, p.2245–2274 (2009).
    [48] Cammack, R., “Bioinorganic chemistry: Hydrogenase sophistication”, Nature, 397, p.214 (1999).
    [49] Collman, J. P., “Coupling H2 to electron transfer”, Nat. Struct. Biol., 3, p.213 (1996).
    [50] Volbeda, A., Charon, M. H., Plras, C., Hatchiklan, E. C., Frey, M., Fontecilla-Camps, J. C., “Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas”, Nature, 373, p.580 (1995).
    [51] Volbeda, A., Garcin, E., Piras, C., de Lacey, A. L., Fernandez, V. M., Hatchikian, E. C., Frey, M., Fontecilla-Camps, J. C., “Structure of the [NiFe] Hydrogenase Active Site: Evidence for Biologically Uncommon Fe Ligands”, J. Am. Chem. Soc., 118, p.12989 (1996).
    [52] Lenz, O., Friedrich, B., “[NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation”, Proc. Natl. Acad. Sci. U.S.A., 98, p.12474 (1998).
    [53] Frey, M., “Nickel-iron hydrogenases: structural and functional properties”, Struct. Bonding, 90, p.97 (1998).
    [54] Cammack, R., Reedijk, J., “Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes”, Ed. Bioinorganic Catalysis; Marcel Dekker:  New York, p.189−225 (1993).
    [55] Sellmann, D., Geipel, F., Moll, M., “[Ni (NHPnPr3)(S3')], the First Nickel Thiolate Complex Modeling the Nickel Cysteinate Site and Reactivity of [NiFe] Hydrogenase”, Angew. Chem., Int. Ed., 39, p.561 (2000).
    [56] Bertrand, P., Dole, F., Asso, M., Guigliarelli, B., Biol, J., “Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry”, Inorg. Chem., 5, p.682 (2002).
    [57] Fong, T. P., Forde, C. E., Lough, A. J., Morris, R. H., Rigo, P., Rocchini, E., Stephan, T., “Synthesis and properties of iron-group hydrido-cyano complexes trans-[MH(CN)(L)2], M=Fe, Ru or Os, L=diphosphine, and their hydrogen, trifluoroboron and triphenylboron isocyanide derivatives of the typetrans-[MH(CNH)(L)2]O3SCF3,trans-[MH(CNBX3)(L)2], X=F or Ph, andtrans-[M(H2)(CNBF3)(dppp)2]BF4[dppp=Ph2P(CH2)3PPh2]”, J. Chem. Soc., Dalton Trans., p.4475 (1999).
    [58] Volbeda, A., Charon, M.-H., Plras, C., Hatchiklan, E. C., Frey, M., Fontecilla-Camps, J. C., “Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas”, Nature, 373, p.580 (1995).
    [59] Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C., Nicolet, Y., “Structure/Function Relationships of [NiFe]-and [FeFe]-Hydrogenases”, Chem. Rev., 107, p.4273–4303 (2007).
    [60] Peters, J. W., Lanzilotta, W. N., Lemon, B. J., Seefeldt, L. C., “X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution”, Science, 282, p.1853 (1998).
    [61] Peters, J. W., “Structure and mechanism of iron-only hydrogenases”, Curr. Opin. Struct. Biol., 6, p.670 (1999).
    [62] Nicolet, Y., Piras, C., Legrand, P., Hatchikian, E. C., Fontecilla-Camps, J. C., “Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center”, Struct. Fold Des., 7, p.13 (1999).
    [63] Nicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C., Peters, J. W., “A novel FeS cluster in Fe-only hydrogenases”, TIBS, 25, p.138 (2000).
    [64] Nicolet, Y., Lacey, A. L., Vernede, X. M., Fernandez, V. M., Hatchikian, E. C., Fontecilla-Camps, J. C., “Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from desulfovibrio desulfuricans”, J. Am. Chem. Soc., 123, p.1596 (2001).
    [65] Pierik, A. J., Hagen, W. R., Redeker, J. S., Wolbert, R. B. G., Boersma, M., Verhagen, M. F. J. M., Grande, H. J., Veeger, C., Mutsaers, P. H. A., Sand, R. H., Dunham, W. R., “Redox properties of the iron‐sulfur clusters in activated Fe‐hydrogenase from Desulfovibrio vulgaris”, Eur. J. Biochem., 209, p.63 (1992).
    [66] Adams, M. W. W., “The structure and mechanism of iron-hydrogenases”, Biochim. Biophys. Acta, 1020, p.115 (1990).
    [67] Adams, M. W. W., Stiefel, E. I., “Organometallic iron: the key to biological hydrogen metabolism”, Curr. Opin. Chem. Biol., 4, p.214 (2000).
    [68] Popescu, C. V., Munck, E., “Electronic structure of the H cluster in [Fe]-hydrogenases”, J. Am. Chem. Soc., 121, p.7877 (1999).
    [69] Pereira, A. S., Tavares, P., Moura, I., Moura, J. G.., Huynh, B. H., “Mössbauer characterization of the iron-sulfur clusters in desulfovibrio v ulgaris hydrogenase”, J. Am. Chem. Soc., 123, p.2771 (2001).
    [70] Niu, S., Thomson, L. M., Hall, M. B., “Theoretical characterization of the reaction intermediates in a model of the nickel-iron hydrogenase of Desulfovibrio gigas”, J. Am. Chem. Soc., 121, p.4000 (1999).
    [71] Cao, Z., Hall, M. B., “Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-Hydrogenase:  structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the diiron active center”, J. Am. Chem. Soc. 123, p. 3734 (2001).
    [72] Liu, Z. P., Hu, P., “A density functional theory study on the active center of Fe-only hydrogenase: characterization and electronic structure of the redox states”, J. Am. Chem. Soc., 124, p.5175 (2002).
    [73] Lawrence, J. D., Li, H., Rauchfuss, T. B., “Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters”, Chem. Commun., p.1482 (2001).
    [74] Pavlov, M., Siegbahn, P. E. M., Blomberg, M. R. A., Crabtree, R. H., “Mechanism of HH activation by nickel-iron hydrogenase”, J. Am. Chem. Soc., 120, p.548 (1998).
    [75] Georgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B., Darensbourg, M. Y., “Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site” Coord. Chem. Rev., 238, p.255 (2003).
    [76] Pavlov, M., Blomberg, M. R. A., Siegbahn, P. E. M., “New aspects of H2 activation by nickel–iron hydrogenase”, Int. J. Quantum Chem., 73, p.197 (1999).
    [77] Li, S., Hall, M. B., “Modeling the active sites of metalloenzymes. 4. Predictions of the unready states of [NiFe] Desulfovibrio gigas hydrogenase from density functional theory”, Inorg. Chem., 40, p.18 (2001).
    [78] Siegbahn, P. E. M., Eriksson, L., Himo, F., Pavlov, M., “Hydrogen atom transfer in ribonucleotide reductase (RNR)”, J. Phys. Chem., B 102, p.10622 (1998).
    [79] Siegbahn, P. E. M., Margareta, R. A., Blomberg, M. R. A., Crabtree, P. R. H., “The mechanism of the Ni-Fe hydrogenases: a quantum chemical perspective”, J. Biol. Inorg. Chem., 6, p.460 (2001).
    [80] De Gioia, L., Fantucci, P., Guigliarelli, B., Bertrand, P., “Ab initio investigation of the structural and electronic differences between active‐site models of [NiFe] and [NiFeSe] hydrogenases”, Int. J. Quantum Chem., 73, p.187 (1999).
    [81] De Gioia, L., Fantucci, P., Guigliarelli, B., Bertrand, P., “Ni-Fe hydrogenases: a density functional theory study of active site models”, Inorg. Chem., 38, p.2658 (1999).
    [82] Bruschi, M., Fantucci, P., Gioia, L., “DFT investigation of structural, electronic, and catalytic properties of diiron complexes related to the [2Fe] H subcluster of Fe-only hydrogenases”, Inorg. Chem., 41, p.1421 (2002).
    [83] Tian, T., Ai, L., Jiang, J., “Porous cobalt phosphide nanorod bundle arrays as hydrogen-evolving cathodes for electrochemical water splitting” RSC Adv., 5, p.10290-10295 (2015).
    [84] I. N. Levine, Quantum Chemistry (6th edition), Prentice Press, New York (2008).
    [85] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Phys. Rev., 136, p. B864-B871 (1964).
    [86] W. Kohn and L. J. “Sham, Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140, p. A1133-A1138 (1965).
    [87] A.D. Becke, “Density functional exchange energy approximation with correct asymptotic behavior”, Phys. Rev. A, 38, p. 3098-3100 (1988).
    [88] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B, 45, p. 13244-13249 (1992).
    [89] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys., Rev. A, 38, p. 3098-3100 (1988).
    [90] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37, p. 785-789 (1988).
    [91] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett., 77, p. 3865-3868 (1996).
    [92] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Physical Review B, 41, p.7892-7895 (1990).
    [93] B. Delley, “An all‐electron numerical method for solving the local density functional for polyatomic molecules”, Quantum Chem., 92, p.508 (1990).
    [94] L. Hedin, “New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem”, Phys. Rev., 139, p.A796 (1965).
    [95] G. Adolfo and W. Ku, “Ab initio studies of electronic excitations in real solids”, International Workshop on Electron Correlations and Materials Properties (1998).
    [96] R.A. Marcus, “On the Theory of Oxidation- Reduction Reactions Involving Electron Transfer”, J. Chem. Phys., 24, p. 966 (1956).
    [97] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., 77, p.3865 (1996).
    [98] D. J. Chadi, “Special points for Brillouin-zone integrations”, J. Phys. Rev. B, 16, p.1746 (1977).
    [99] D. Strauch, J. Chu, T. Dietl, M. Rusu, W. Dobrowolski, T. Story, “New data and updates for several semiconductors with chalcopyrite structure, for several II-VI compounds and diluted magnetic IV-VI compounds”, Springer Berlin Heidelberg, p. 115-128 (2013).
    [100] N. M. O'Boyle, A. L. Tenderholt and K. M. Langner., “Cclib: A library for package-independent computational chemistry algorithms”, J. Comp. Chem., 29, p. 839-845 (2008).
    [101] W.J. Herre, R. Ditcrfield and J.A. Pople, “Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic molecules”, J. Chem. Phys., 56, p. 2257 (1972).
    [102] Accelrys Software Inc., Discovery Studio Modeling Environment, Release 5.5, San Diego: Accelrys Software Inc., 2007.
    [103] C. M. Yang, M. H. Hon and I. C. Leu, “Hierarchical ZnO nanostructures growth by aqueous solution process for dye-sensitized solar cells”, J. Electrochem. Soc., 159, p.H638 (2012).
    [104] S. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, “Perovskite as Light Harvester: A Game Changer in Photovoltaics”, Angew. Chem. Int. Ed., 53, p.2812, (2014).
    [105] A. Seidl, A. Görling, P. Vogl, and J. A. Majewski, “Generalized Kohn-Sham schemes and the band-gap problem”, Phys. Rev. B, 53, p.3764 (1995).
    [106] A. Alkauskas, and A. Pasquarello, “Band-edge problem in the theoretical determination of defect energy levels: the O vacancy in ZnO as a benchmark case”, Physical Rev. B, 84, p.125206 (2012).
    [107] M. Topsakal, S. Cahangirov, E. Bekaroglu and S. Ciraci1, “A First-Principles study of zinc oxide honeycomb structures”, Physical Rev. B, 80, p. 235119 (2010).
    [108] M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D. Gust, M. Ghirardi, A. L. Moore and T. A. Moore, “[FeFe]-Hydrogenase-Catalyzed H2 Production in a Photoelectrochemical Biofuel Cell”, J. Am. Chem. Soc., 130, p. 2015-2022 (2008).
    [109] L. Garza, G. Jeong, P. A. Liddell,T. Sotomura, T. A. Moore, A. L. Moore and D. Gust, “Enzyme-Based Photoelectrochemical Biofuel Cell”, J. Phys. Chem., 107, p. 10252-10260 (2003).
    [110] M. Hambourger, G. Kodis, M. D. Vaughn, G. F. Moore, D. Gust, A. L. Moore and T. A. Moore, “Solar Energy Conversion in a Photoelectrochemical Biofuel cell”, Dalton Trans, 45, p. 9979-9989 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE