研究生: |
謝惠娟 |
---|---|
論文名稱: |
直觀模糊集合的相似測度及其應用在群體決策之研究 Similarity Measure between Intuitionistic Fuzzy Sets and Its Application to Group Decision Making |
指導教授: | 洪文良 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
中文關鍵詞: | 直觀模糊集 、距離測度 、相似測度 |
外文關鍵詞: | Intuitionistic fuzzy sets, Distance measure, Similarity measure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直觀模糊集的相似測度(similarity measure)在許多領域的研究上是重要且實用的,許多直觀模糊集的相似測度方法也已被推導計算,並將相似測度應用在圖形識別、機器學習、群體決策及市場預測等等的問題上,本研究主要是以Perlibakas提出的16種距離公式中,借用其中5種公式,作為直觀模糊集的距離測度,進而創造出7種新的直觀模糊集間的相似測度,並應用在群體決策(group decision making)的問題上,最後與過去學者提出的群體決策方法作比較。
A Similarity measure between intuitionistic fuzzy sets is a very important and practical in a lot of fields. Many different similarity measures between intuitionistic fuzzy sets have already been derived and calculated in some literature, and apply similarity measures on the issue that pattern recognition, machine learning, group decision making and market prediction, etc. In this paper is mainly used by Perlibakas(2004) originated the sixteen distance formulas. Using five formulas of them as the distance measures of intuitionistic fuzzy sets, and than create seven new similarity measures between intuitionistic fuzzy sets. Finally, we are applying the question of group decision making, and comparing the methods of group decision making in the other scholars.
[1] Atanassov K. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96.
[2] Atanassov K. (1994). New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, 137-142.
[3] Atanassov K. (1999). Intuitionistic fuzzy sets: Theory and Applications, Physica-Verlag , Wyrzburg.
[4] Dengfeng L., Cheng C. (2002). New similarity measures of in- tuitionistic fuzzy sets and application to pattern recognitions, Pattern Recognition Letters 23, 221-225.
[5] Dubois D., Gottwald S., Hajek P., Kacprzyk J., Prade H. (2005). Terminological difficulties in fuzzy set theory–The case of “Intuitionistic Fuzzy sets”, Fuzzy Sets and Systems 156, 485-491.
[6] De S. K., Biswas* R., Roy A. R. (2000). Some operations on intuitionistic fuzzy sets, Fuzzy Sets and Systems 114, 477-484.
[7] Fan J. L., Ma Y. L., Wei W. X., (2001). On some properties of distance measures, Fuzzy Sets and Systems 117, 355-361.
[8] Grzegorzewski P., Mrowka E., 2005, Some notes on (Atanassov’s) intuitionistic fuzzy sets, Fuzzy Sets and Systems 156, 492-495.
[9] Grzegorzewski P. (2004). Distance between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric, Fuzzy Sets and Systems 148, 319-328.
[10] Hung W. L., Yang M. S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance, Pattern Recognition Letters 25, 1603-1611.
[11] Hung W. L., Yang M. S. (2006). Similarity measures of intuitionistic fuzzy sets based on metric, Int. J. Approx. Reason. doi:10.1016 /j.ijar.2006.10.002.
[12] Liang Z., Shi P. (2003). Similarity measures on intuitionistic fuzzy sets, Pattern Recognition Letters 24, 2687-2693.
[13] Mitchell H. B. (2003). On the Dengfeng – Chuntian similarity measure and its application to pattern recognition, Pattern Recognition Letters 24, 3101-3104.
[14] Pal N.R., Pal S.K. (1992). Some properties of the exponential entropy, Inform. Sci. 66, 119-137.
[15] Pal N.R., Pal S.K. (1991). Entropy, a new definition and its applications. IEEE. Trans. Systems Man Cybernet 21, 1260-1270.
[16] Perlibakas, V. (2004). Distance measures for PCA-based face recognition, Pattern Recognition Letters 25, 711-724.
[17] Szmide E., Kacprzyk J. (1996). Intuitionistic fuzzy sets in group decision making, Notes on IFS, 2, 15-32.
[18] Szmide E., Kacprzyk J. (1998). Group decision making under intuitionistic fuzzy preference relations, IPMU’98, 172-178.
[19] Szmide E., Kacprzyk J. (2000). Distance between intuitionistic fuzzy sets, Fuzzy Sets and Systems 114, 505-518.
[20] Szmide E., Kacprzyk J. (2005). A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making. Lecture Notes in Computer Science (Subseries LNAI 3558) 272-282.
[21] Wu K.L., Yang M.S. (2002). Alternative c-means clustering algorithms, Pattern Recognition 27, 2267-2278.
[22] Wang W. J. (1997). New similarity measures on fuzzy sets and on elements, Fuzzy Sets and Systems 85, 305-309.
[23] Yang M.S., Wu K.L. (2004). A similarity-based robust clustering method, IEEE Trans. Pattern Anal. Machine Intell. 26, 434-448.
[24] Zadeh, L.A. (1965). Fuzzy sets, Inform. and Control 8, 338-356.