簡易檢索 / 詳目顯示

研究生: 鄭少樓
論文名稱: 銅銦碲奈米線的合成與鋰離子陽極材料的應用
Synthesis of Copper Indium Telluride Nanowires and Their Use for Anode Material of Lithium-Ion Battery
指導教授: 段興宇
口試委員: 周更生
曾院介
段興宇
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 52
中文關鍵詞: 銅銦碲奈米粒子銅銦碲奈米線
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅銦銻為直接能隙的三元半導體材料,由於能隙約1.2eV,缺陷複合物有良好的導電性且在近紅外光區域有高敏感性。銅銦碲也有潛力用於鋰離子電池應用,其理論電容為515mAh/g,高於石墨的372mAh/g,可做為石墨的取代物。
    本篇研究使用有機熱溶劑注射法(hot-injection)合成銅銦碲奈米顆粒與銅銦銻奈米線,其奈米線反應機制為溶液液體生長法(Solution-Liquid-Solid, SLS),利用低熔點的鉍作為觸媒,當溶液到達適當溫度時,再將反應物注入反應器內形成奈米化合物,藉由改變反應物、反應溫度、反應時間、界面活性劑種類來合成奈米化合物,用SEM、HR-TEM、FFT、XRD、EDS-Mapping等儀器來觀察其奈米化合物形狀與分析其結構。利用鍛燒後銅銦銻奈米線作為鋰離子電池陽極材料,進行充放電循環測試,得到的電容量經過219個循環後仍有819mAh/g,並以不同的電流密度進行充放電測試,鍛燒處理後的銅銦碲奈米線在鋰離子電池應用上能有顯著的提升,證實銅銦碲奈米材料可做為鋰離子電池電極。


    第一章 緒論...............................................1 1-1奈米材料...............................................1 1-2奈米化合物合成.........................................3 1-3奈米化合物形狀控制................. ...................3 1-4奈米線合成.............................................7 1-5奈米材料用於鋰離子電池................................12 1-6多元成分材料應用於鋰離子電池..........................14 1-7銅銦碲文獻回顧........................................15 第二章 實驗步驟與分析方法................................17 2-1實驗藥品..............................................17 2-2實驗設備..............................................18 2-3實驗步驟..............................................19 2-4儀器鑑定方法..........................................20 第三章 結果與討論........................................22 3-1銅銦碲奈米粒子合成....................................22 3-2銅銦碲奈米線合成......................................29 第四章 結論..............................................44 第五章 未來工作..........................................46 第六章 參考文獻..........................................47

    1. Park, J., et al., Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed Engl, 2007. 46(25): p. 4630-60.
    2. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996. 271(5251): p. 933-937.
    3. Calliari, L., et al., Composition and structure of a-C:Au nanocomposites obtained by physical vapour deposition. Applied Surface Science, 2008. 255(5): p. 2214-2218.
    4. Kaleji, B.K., R. Sarraf-Mamoory, and N. Hosseinabadi, Synthesis of Co3W-Cu composite nanopowders by mechanical milling and hydrogen reduction process. Powder Metallurgy, 2010. 53(2): p. 174-176.
    5. Salavati-Niasari, M., M.R. Loghman-Estarki, and F. Davar, Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid. Chemical Engineering Journal, 2008. 145(2): p. 346-350.
    6. Niu, Z.W., et al., Optimization of Process Parameters Based on ANN When Synthesizing Nano-size Hydroxyapatite Using Solgel Method. 2009 4th Ieee International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1 and 2, 2009: p. 420-423.
    7. Kim, G.S., et al., Microstructure and mechanical properties of a ZnS-SiO2 composite prepared by ball-milling and spark plasma sintering. Materials Characterization, 2008. 59(9): p. 1201-1205.
    8. Murray, C.B., D.J. Norris, and M.G. Bawendi, Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. Journal of the American Chemical Society, 1993. 115(19): p. 8706-8715.
    9. Song, O. and Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. Journal of the American Chemical Society, 2004. 126(19): p. 6164-6168.
    10. Jana, N.R., Y.F. Chen, and X.G. Peng, Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chemistry of Materials, 2004. 16(20): p. 3931-3935.
    11. Cheon, J.W., et al., Shape evolution of single-crystalline iron oxide nanocrystals. Journal of the American Chemical Society, 2004. 126(7): p. 1950-1951.
    12. Peng, X.G., et al., Shape control of CdSe nanocrystals. Nature, 2000. 404(6773): p. 59-61.
    13. Peng, Z.A. and X.G. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. Journal of the American Chemical Society, 2002. 124(13): p. 3343-3353.
    14. Yin, M., et al., Zinc oxide quantum rods. Journal of the American Chemical Society, 2004. 126(20): p. 6206-6207.
    15. Lin, S.L., et al., High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Letters, 2004. 4(11): p. 2261-2264.
    16. Lifshitz, E., et al., Synthesis and characterization of PbSe quantum wires, multipods, quantum rods,and cubes. Nano Letters, 2003. 3(6): p. 857-862.
    17. Jun, Y.W., J.S. Choi, and J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed Engl, 2006. 45(21): p. 3414-39.
    18. Puntes, V.F., et al., Synthesis of hcp-Co nanodisks. Journal of the American Chemical Society, 2002. 124(43): p. 12874-12880.
    19. Ghezelbash, A. and B.A. Korgel, Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir, 2005. 21(21): p. 9451-9456.
    20. Ghezelbash, A., M.B. Sigman, and B.A. Korgel, Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Letters, 2004. 4(4): p. 537-542.
    21. Yang, L.B., et al., Oriented attachment growth of three-dimensionally packed trigonal selenium microspheres into large-area wire networks. European Journal of Inorganic Chemistry, 2007(28): p. 4438-4444.
    22. Wang, P.P., et al., Magnetic Properties of Feni Nanowire Arrays Assembled on Porous Aao Template by Ac Electrodeposition. International Journal of Modern Physics B, 2010. 24(15-16): p. 2302-2307.
    23. Holmes, J.D., et al., Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000. 287(5457): p. 1471-1473.
    24. Hanrath, T. and B.A. Korgel, Supercritical fluid synthesis of Ge nanowires. Abstracts of Papers of the American Chemical Society, 2002. 223: p. A64-A64.
    25. Davidson, F.M., et al., Supercritical fluid-liquid-solid synthesis of gallium arsenide nanowires seeded by alkanethiol-stabilized gold nanocrystals. Advanced Materials, 2004. 16(7): p. 646-+.
    26. Fanfair, D.D. and B.A. Korgel, Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Crystal Growth & Design, 2005. 5(5): p. 1971-1976.
    27. Hanrath, T. and B.A. Korgel, Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Advanced Materials, 2003. 15(5): p. 437-440.
    28. Yazawa, M., M. Koguchi, and K. Hiruma, Heteroepitaxial Ultrafine Wire-Like Growth of Inas on Gaas Substrates. Applied Physics Letters, 1991. 58(10): p. 1080-1082.
    29. Yazawa, M., et al., Effect of One Monolayer of Surface Gold Atoms on the Epitaxial-Growth of Inas Nanowhiskers. Applied Physics Letters, 1992. 61(17): p. 2051-2053.
    30. Morales, A.M. and C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998. 279(5348): p. 208-211.
    31. Gudiksen, M.S. and C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. Journal of the American Chemical Society, 2000. 122(36): p. 8801-8802.
    32. Wu, Y.Y. and P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 2001. 123(13): p. 3165-3166.
    33. Trentler, T.J., et al., Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway. Journal of the American Chemical Society, 1997. 119(9): p. 2172-2181.
    34. Wang, F.D., et al., Solution-liquid-solid growth of semiconductor nanowires. Inorganic Chemistry, 2006. 45(19): p. 7511-7521.
    35. Yu, H., et al., Heterogeneous seeded growth: A potentially general synthesis of monodisperse metallic nanoparticles. Journal of the American Chemical Society, 2001. 123(37): p. 9198-9199.
    36. Fanfair, D.D. and B.A. Korgel, ZnE (E = S, Se, Te) nanowires grown by the solution-liquid-solid mechanism: Importance of reactant decomposition kinetics and the solvent. Crystal Growth & Design, 2008. 8(9): p. 3246-3252.
    37. Grebinski, J.W., et al., Synthesis and characterization of Au/Bi Core/Shell nanocrystals: A precursor toward II-VI nanowires. Journal of Physical Chemistry B, 2004. 108(28): p. 9745-9751.
    38. Wooten, A.J., et al., Solution-Liquid-Solid Growth of Ternary Cu-In-Se Semiconductor Nanowires from Multiple- and Single-Source Precursors. Journal of the American Chemical Society, 2009. 131(44): p. 16177-16188.
    39. Arico, A.S., et al., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4(5): p. 366-377.
    40. Chockla, A.M., et al., Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. Journal of Physical Chemistry C, 2012. 116(34): p. 18079-18086.
    41. Chan, C.K., et al., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008. 3(1): p. 31-35.
    42. Xue, M.Z. and Z.W. Fu, Electrochemical reactivity mechanism of CuInSe2 with lithium. Thin Solid Films, 2008. 516(23): p. 8386-8392.
    43. Xu, J., et al., Low-Temperature Synthesis of CuInSe2 Nanotube Array on Conducting Glass Substrates for Solar Cell Application. Acs Nano, 2010. 4(10): p. 6064-6070.
    44. Grisaru, H., et al., Microwave-assisted polyol synthesis of CulnTe(2) and CulnSe(2) nanoparticles. Inorganic Chemistry, 2003. 42(22): p. 7148-7155.
    45. Peled, E., et al., Improved graphite anode for lithium-ion batteries - Chemically bonded solid electrolyte interface and nanochannel formation. Journal of the Electrochemical Society, 1996. 143(1): p. L4-L7.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE