簡易檢索 / 詳目顯示

研究生: 王人星
論文名稱: 製造貨批量變動之製造系統模擬與資料挖礦以一面板廠為實證研究
Manufacturing Data Mining for Lot Size Variation by A Simulation Model: An Empirical Study on TFT-LCD Manufacturing
指導教授: 簡禎富
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 44
中文關鍵詞: 半導體製程TFT-LCD製程資料挖礦在製品等級
外文關鍵詞: semiconductor manufacturing, TFT-LCD manufacturing, data mining, WIP level
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著高科技產業,包括半導體產業以及TFT-LCD產業,進入微利的時代,許多研究開始實驗製造批量大小的改變來降低週期時間與成本。高科技產業中,半導體製程與TFT-LCD製程有些相似的特性,本研究的目的以一模擬真實的TFT-LCD廠模型為基礎於實驗TFT-LCD廠中的製造批量大小來觀察其變化對於績效指標的影響,本研究並運用資料挖礦的方法來找出在製程中的關鍵機台,並且整理有效的資訊蒐集有效的模式。因此藉由分析的結果,本研究也擬出一較好的在製品等級配置及討論相關的應用。

    關鍵字:半導體製程、TFT-LCD製程、資料挖礦、在製品等級


    Abstract
    As high-tech industry including semiconductor manufacturing industry breaks into a tiny-profit age, many studies examine lot size variation to decrease cycle time and cost. High-tech industry including semiconductor and TFT-LCD manufacturing industry has similar manufacturing properties, this study aims to examine and monitor the lot size variation to study its impacts on performance indexes. Based on a fab simulation model, in this research also use data mining approach to find out critical machines in the manufacturing process and extract potential useful patterns. Thus, we will try to suggest better WIP level arrangement on the basis of the results. We have employed this approach in a real TFT-LCD fab as an empirical study for validation.

    Key words: Semiconductor manufacturing, TFT-LCD manufacturing, Data mining approach, WIP level

    Table of Contents Chapter 1 Introduction 1 1.1 Background, significance and motivation 1 1.2 Research aims 2 1.3 Overview of this thesis 3 Chapter 2 Literature Review 4 2.1 Some critical factors in semiconductor manufacturing 4 2.2 Data mining 8 2.2.1 Self-organize feature map (SOM) 10 2.2.2 Clustering analysis 12 2.3 The SWP properties in the semiconductor manufacturing 15 2.4 Simulation 16 Chapter 3 Conceptual Framework 18 3.1 Problem Understanding 20 3.1.1 Problem definition and structuring 20 3.1.2 System understanding 22 3.1.3 Data preparation 23 3.2 Model Construction 25 3.2.1 Indices 25 3.2.3 Simulation Model Building 28 3.3 Experiment and Analysis 29 3.3.1 Simulation experiment 29 3.3.2 Data mining approach: SOM 29 Chapter 4 An Illustrative Study 30 4.1 Simulation Model Details 30 4.2 Result analysis with data mining approach 34 4.2.1 Performance index 34 4.2.2 Bottleneck analysis 35 4.2.3 WIP level decision 40 Chapter 5 Conclusion 42 References 43 Figure List Figure 2.1 the repeated steps of data mining (Berry et al., 1997) 9 Figure 3.1 Conceptual Framework 19 Figure 3.2 Mini-Fab typical reentrant flow structure 22 Fig. 4.1 The simulation model 34 Fig. 4.2 Machine utilization cluster by SOM (20 pcs) 36 Fig. 4.3 Machine utilization cluster by SOM (10 pcs) 37 Fig. 4.4 Machine utilization cluster by SOM (5 pcs) 38 Fig. 4.5 CT to WIP graph 40 Fig. 4.6 TH to WIP graph 41 Table List Table 2.1 The definitions of variety distance measures 13 Table 3.1 Data preparation requirement 25 Table 4.1 Machine ID and quantities 30 Table 4.2 Standard operation time (mins) of each machine by lot (20pcs/lot) 31 Table 4.3 Performance indexes in each scenario 35 Table 4.4 Rank by utilization (20pcs) 35 Table 4.5 Rank by utilization (10pcs) 37 Table 4.6 Rank by utilization (5pcs) 38

    References
    Wein, L. M. (1988), “Scheduling semiconductor wafer fabrication”, IEEE Transactions on Semiconductor Manufacturing, Vol. 1, No.3.
    Perkinson, T. L., McLarty, P. K., Gyurcsik, R. S., and Cavin, R. K. (1994), “Single-wafer cluster tool performance: an analysis of throughput”, IEEE Transactions on Semiconductor Maunfacturing, Vol. 7, No. 3.
    Lu, S. C. H., Ramaswamy, D., and Kumar, P. R. (1994), “Efficient scheduling policies to reduce mean and variance of cycle time in semiconductor manufacturing plants”, IEEE Transactions on Semiconductor Manufacturing, Vol. 7, No. 3.
    Perkinson, T. L., McLarty, P. K., Gyurcsik, R. S. (1996), “Single-wafer cluster tool performance: an analysis of the effects of redundant chambers and revisitation sequences on throughput”, IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 3.
    Leachman, R. C. (1997), “Closed-loop measurement of equipment efficiency and equipment capacity”, IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 1.
    Wood, S. C. (1997), “Cost and cycle time performance of fabs based on integrated single-wafer processing”, IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 1.
    Dabbas, R. M., and Chen, H. N. (2001), “Mining semiconductor manufacturing data for productivity improvement--- an integrated relational database approach”, Computers in Industry, pp. 29-44
    Kwak, C. and Yih, Y. (2001), “Simulation comparison of collaboration protocol-based testing models”, International Journal of Production Research, Vol. 39, No. 13, pp. 2947-2956
    Dabbas, R. M. and Fowler, J. W. (2003), “A new scheduling approach using combined dispatching criteria in wafer fabs”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3.
    Ikeda, S., Nemoto, K., Funabashi, M., Uchino, T., Yamamoto, H., Yabuoshi, N., Sasaki, Y., Komori, K., Suzuki, N., Nishihara, S., Sasabe, S., and Koike, A. (2003), “Process integration of single-wafer technology in a 300-mm fab, realizing drastic cycle time reduction with high yield and excellent reliability”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 2.
    Jacobs, J. H., Etman, L. F. P., Campen, E. J. J., and Rooda, J. E. (2003), “Characterization of operation time variability using effective processing times”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3.
    Min, H. S., and Yih, Y. (2003), “Development of a real-time multi-objective scheduler for a semiconductor fabrication system”, International Journal of Production Research, Vol. 41, No. 10, pp. 2345-2364.
    Bonnin, O., Mercier, D., Levy, D., Henry, M., Pouilloux, I., and Mastromatteo, E. (2003), “Single-wafer/ mini-batch approach for fast cycle time in advanced 300-mm fab”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 2.
    Wein, L. M. (1992), “On the relationship between yield and cycle time in semiconductor wafer fabrication”, IEEE Transactions on Semiconductor Manufacturing, Vol. 5, No. 2.
    Koonce, D. A., and Tsai, S. C. (2000), “Using data mining to find patterns in genetic algorithm solutions to a job shop schedule”, Computers and Industrial Engineering, pp. 361-374

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE