研究生: |
林詩敏 Lin, Shih-Min |
---|---|
論文名稱: |
放射性廢棄物處置之優質緩衝回填材料研製 Preparation of advanced buffer materials for application to radioactive waste repository |
指導教授: |
陳建瑞
Chen, Jiann-Ruey 鄧希平 Teng, Shi-Ping |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 蒙托土 、四級銨鹽 、18-crown-6 、222-cryptand 、銫離子 |
外文關鍵詞: | montmorillonite, HDTMA, Cesium |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蒙托土(mmt)是目前放射性廢棄物處置設施中廣泛使用的緩衝回填材料,但蒙托土對銫離子的吸附選擇性欠佳,尤其在高離子強度環境,背景溶液中的陽離子會與銫離子競爭吸附,降低蒙托土對銫離子的吸附。鑒於此,本研究利用四級銨鹽(HDTMA)、18-CROWN-6(18C6)和222-cryptand等有機物質,改質鈉型蒙托土,製備優質緩衝回填材料。利用X光繞射(XRD)、電子顯微鏡(SEM)、熱重分析(TGA)和氮氣表面吸附方式(N2-BET)等技術,分析有機黏土的基本性質與特性,並進行銫離子吸附實驗,評估有機黏土的功能表現。
實驗結果顯示經由18C6改質蒙托土(18C6-mmt)在0.1 M背景離子強度下,對銫離子的吸附率最高可達94%,比原始鈉型蒙托土對銫離子的吸附率提高約5%,而在1 M背景離子強度下,對銫離子的吸附率最高可達77%,比原始鈉型蒙托土對銫離子的吸附率提高約11%;經由222-cryptand改質的有機黏土(cryp-mmt)在0.1 M背景離子強度下,對銫離子的吸附率最高可達96%,比原始鈉型蒙托土mmt對銫離子的吸附率提高約8%,而在1 M背景離子強度下,對銫離子的吸附率最高可達84%,比原始鈉型蒙托土對銫離子的吸附率提高約20%,其中crypt-mmt的吸附選擇性和吸附率又比18C6-mmt顯著,所以利用18-crown-6和222-cryptand修飾原始鈉型蒙托土,可增加對銫離子的吸附選擇性和吸附率,然而,利用四級銨鹽+18-crown-6或是四級銨鹽+222-cryptand改質的18C6-4o-mmt和crypt-4o-mmt對銫離子吸附率和吸附選擇性都較18C6-mmt和crypt-mmt欠佳,故日後製備高吸附選擇性的優質緩衝回填材料時,四級銨鹽銨鹽改質步驟並不是必要改質步驟。
Montmorillonite is widely used as backfilled/ buffer material in radioactive waste repository facilities. However, the shortcomings of poor sorption selectivity of montmorillonite need to be improved by surface modification. The self-assembly modification of Na-montmorillonite through the intercalation of hexadecyl- trimethylammonium (HDTMA), 18-crown-6 crown ether (18C6) and 222-cryptand (crypt) into the clay’s interlayer spaces was achieved in this study. Means including X-ray diffraction (XRD), Scanning electron microscopy (SEM), thermogravimetric analysis (TG), and N2-BET analysis were applied to probe the surface properties of obtained self-assembly organoclays. Moreover, their performances were examined by conducting Cs sorption experiments.
The XRD results demonstrated the expanded interlayer spaces of obtained self-assembly organoclays due to successfully intercalation of HDTMA, 18C6, and crypt molecules. SEM observation showed the aggregated appearance of self-assembly organoclays with reduced particle sizes. The FTIR analyses showed the reduced amount of water adsorbed on self-assembly organoclays after modification. The TG results revealed the excellent thermal stability of obtained organoclays.
Organoclays modified with 18-crown-6 or 222-cryptand possess higher sorption selectivity toward cesium cation compared to raw montmorillonite samples. Particularly, over 10 % of increase in the Cs sorbed ratio under 0.1 N NaCl background solutions was achieved by the crypt-mmt and 18C6-mmt samples. These observations demonstrated the high Cs sorption selectivity of 18C6-mmt and crypt-mmt. In contrast, organoclays pretreated with HDTMA didn’t show any significant improvement in Cs uptake under high ionic strength solutions. The latter observation implied that HDTMA modification prior to 18C6 and crypt intercalation is not the necessary step when preparing high sorption selectivity buffer/back-filled materials.
1.台灣電力公司,85會計年能源成本分析
2.台灣電力公司,核能電廠的安全設計與營運
3.Han, K., Heinonen, W. J. and Bonne A. , “Radioactive Waste Disposal:Global Experience and Challenges,”IAEA Bulletin, 39, 33-41., 1997
4.劉東山,蔡昭明,放射性廢料管理,曉園出版社,台北,1993
5.Onoue, A., Horie,Y., Ishii,T., Ogata, N. and Komine, H.“Consolidation and Swelling Properties of Bentonite-Sand Mixture for Sealing Low-Level Radioactive Waste Repositories. ”Trans, 12th Ind. Conf.on SMIRT, Session N
03/2, 351-356., 1993
6.Ogata, N. and Komine, H.“Permeability Changes of Bentonite-Sand Mixture Before and After Swelling. ”Trans, 12th Ind. Conf.on SMIRT, Session N 03/3, 357-362., 1993
7.Holopainen, P.,“Crushed Aggregate-Bentonite Mixtures as Backfill Material for Repositories of Low-and Intermediate Level Radioactive.”Engineering Geology, 21, 239-245., 1985
8.低放射性廢棄物最終處置設施場址設置條例,行政院原子能委員會
http://www.aec.gov.tw/www/control/waste/index_07.php
9.台灣電力公司,低放射性最終處置設計概念,2009
10.張仲民,普通土壤學,國立編譯館,1988
11.Cary T. Chiou and David W. Rutherford,”Sorption of N2 and EGME Vapors on Some Soils,Clays,and Mineral Oxides and Determination of Sample Surface Areas by Use of Sorption Data ”,Environ. Sci. Technol.,Vol. 27,No.8,1993
12.朱海帆譯,土壤學,中正書局,1974
13.Jean-Philippe Bellenger 1, Siobh_an Staunton,” Adsorption and desorption of 85Sr and 137Cs on reference minerals, with and without inorganic and organic surface coatings”, Journal of environmental radioactivity, 99, 831-840, 2008
14.趙杏媛,張有瑜,黏土礦物與黏土礦物分析,海洋出版社,1990
15.Kevin, G. and C. S. Tr. Hurlbut, Manual of Mineralogy, 21th ed, John Wiley & Sons, 1993
16.蘇佳琪,”氧化鋁、氧化鐵插層蒙脫土吸附水中天然有機物之研究”,國立成功大學資源工程系碩士論文,2002
17.楊博淳,”以乙烯鍵吸附量測定蒙脫石表面積之研究”,國立成功大學資源工程學系碩士論文,2003
18.郭魁士,土壤學,中國出版社,台北縣,1985
19.Grim, R. E., Clay Minrealogy, McGraw-Hill, New York, 1968
Amethyst Galleries, “The Clay Mineral Group.”, 2006. February 22, 2007
20.Komine, H., ”Simplified Evaluation on Hydraulic Conductivities of Sand-Bentonite Mixture Backfill.”Applied Clay Science, 26, 1-4, 13-19., 2009
21.Koksal, E., Ramachandran, R., Somasundaran, P., Maltesh, C.,”Flocculation of oxides using polyethylene oxide”, Power Technol 62, pp 253-249
22.洪崑煌,環境化學,國立編譯館,台北市,1996
23.張郇生,”麥飯石探微¬ 兼論膨潤時外型、特徵及用途”,地質,第19卷,第一期,pp 68-88,1999
24.劉慧玲,”台東樟原黏土資源之有機黏土備致研究”,國立成功大學資源工程學系碩士論文,2001
25.J. Madejova, M. Janeka, P. Komadel, H.-J. Herbert, H.C. Moog, FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl. Clay Sci. 20 , 255– 271., 2002
26.趙杏媛,張有瑜,黏土礦物與黏土礦物分析,海洋出版社,1990
27.W. Xie, Z.M. Gao, W.P. Pan, D. Hunter, A. Singh, R. Vaia, Chem. Mater. 13, 2979., 2001
28.趙承琛,界面活性劑化學,復文書局,1984
29.Pedersen, C. J. ,”Journal of the American Chemical Society”, 89: 7017–7036, 1967
30.De Jong, F., Reinhoudt, D.N.,”Stability and Reactivity of Crown Ether Complexes, Hydroxy Groups, and their Sulphur Analogues”, Wiley, New York , Chap. 2, 1980
31.張有義、郭蘭生編譯,”膠體及界面化學入門”,高力圖書有限公司,1997
32.閻誠麟,”不同類型界面活性劑對黏土礦物吸附非離子有機汙染物之影響”,國立中央大學環境工程研究所碩士論文,1997
33.Kopinke, F. D.; Georgi, A.;Mackenzie, K., “Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers.1.Structure-Property Correlation”, Environ. Sci. Technol., Vol. 35, pp.2536-2542, 2001
34.Giles, C.H., T.H. Macewan, S.N. Nakhwa and D. Smith, ”Studies in adsorption part XI. A system of classification of adsorption isotherms and its uses in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids”, J. Chem. Soc., pp.3973-3993, 1960
35.Dzombak, D.A., Morel, F.M.M., ”Surface Complexation Modeling”, Wiley-Interscience, 1990
36.Everett,D. H., ”Basic Principle of Colloid Science”, Royal Society of Chemistry, pp.110, 1988
37.Westall, J., and Hohl, H. “A comparison of electrostatic models for the oxide/solution interface”, Adv. Colloid Interface Sci., 12, 265-294, 1980
38.Hayes,K.F., and Leckie, J.O.”Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface”, J. Colloid Interface Sci., 115, 564-572, 1987
39.James, R.O., and Parks, G.A.”Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties”, Surface Colloid
Sci., 12, 119-126, 1982
40.Sposito, G.” The Surface Chemistry of Soils”; Oxford University Press: New York, 1984.
41.Haswell, SJ,”Atomic Absorption Spectrometry; Theory, Design and Applications.”Elsevier, Amsterdam, 2001
42.S.I. Marras,” Thermal and colloidal behavior of amine-treated clays: The role of amphiphilic organic cation concentration”, Journal of colloid and interface science, 2007
43.P. Aranda, “Intercalation of Macrocyclic Compounds (Crown Ethers and Cryptands) into 2:1 Phyllosilicates. Stability and Calorimetric Study”, Langmuir, 10, 1207-1212, 1994
44.王明光,土壤環境礦物學,藝軒圖書出版有限公司,2000
45.M. V. Sivaiah, ”Unusual extraction behaviour of crown ether when intercalated in bentonite”, New J. Chem., 29, 564-569, 2005
46.Casal et al., “Vibrational spectral of ammonium ions in
crown-ether-NH4+-montmorillonite complexes”, J Chem. Soc. Faraday Trans., 80, 2225-2232., 1984