簡易檢索 / 詳目顯示

研究生: 吳東興
Wu, Dong-Shing
論文名稱: 無線感測網路之分散式適應性定位與追蹤技術
Decentralized Adaptive Positioning and Tracking Techniques for Wireless Sensor Networks
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 魏哲和
Wei, Che-Ho
陳紹基
Chen, Sau-Gee
溫志宏
Wen, Jyh-Horng
林風
Lin, Phone
洪樂文
Hong, Yao-Win
王藏億
Wang, Tsang-Yi
王晉良
Wang, Chin-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 104
中文關鍵詞: 分散式方法定位遞迴式最佳化追蹤無線感測網路
外文關鍵詞: Decentralized Methods, Positioning, Recursive Optimization, Tracking, Wireless Sensor Networks
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著位置感知應用與服務需求的快速增加,無線感測網路(WSNs, wireless sensor networks)之室內定位技術受到極大的重視。一般而言,WSNs定位可分為集中式方法或分散式方法,然而在大規模和/或密集的網路中,分散式方法在能量效率上的表現會優於集中式方法。因此,在WSNs中開發具有高準確度和追蹤效能的分散式定位技術是有價值的。
    在本論文中,我們根據遞迴式最佳化處理,提出數種新式WSNs定位演算法,包括遞迴式最小平方法、改良式凸集投影法(POCS, projection onto convex sets)以及遞迴式加權最小絕對值法。這些定位演算法是被證明經由最小化一與時間相關的遞迴式成本函數,然後以分散式之疊代的方法來實現。更具體來說,參與定位的感測節點利用其局部估計值的加權平均以及可靠度資訊去疊代計算目標物的位置,其中目標物的最新位置估計值是經由目前感測節點的觀測值和先前感測節點的目標物位置估計值所計算獲得。所提出的演算法可視為帶有一個適當步階的遞迴式子梯度演算法或是POCS演算法,在每次的疊代會採取一個有效規則去更新可變步階,且最後能保證收斂到一個駐點。電腦模擬結果顯示,相較於之前相關的演算法,我們提出的演算法可達到更好的定位準確度。
    為了能在WSNs中追蹤目標物,我們進一步提出一分散式加權擴展型卡爾曼濾波(WEKF, weighted extended Kalman filtering)定位與追蹤演算法,其中一訊息傳遞演算法是被使用於感測節點之間的通訊以及選擇目標物移動區域附近的感測節點來參與定位。在目前的疊代中,感測節點會計算一個目標物位置估計值,然後將此估計值傳送到下一個感測節點去執行下一次的疊代計算。更新的程序是循環傳遞在目標物附近的參與感測節點之間。我們亦提供了收斂性分析和電腦模擬結果,去驗證所提出之WEKF演算法的收斂和效力。


    With a growing demand for location-aware applications and services, indoor positioning techniques based on wireless sensor networks (WSNs) have received great attention in recent years. Positioning in WSNs can be realized in a centralized or decentralized way, where the decentralized approach generally has a better energy efficiency than the centralized approach in large-scale and/or dense networks. It is therefore worth exploiting decentralized positioning schemes that can provide good location accuracy and tracking performance for WSNs.
    In this dissertation, we propose some new decentralized positioning algorithms based on recursive optimization procedures for WSNs, including the recursive least-squares, the improved projection onto convex sets (POCS), and the recursive weighted least absolute value method. Each of these algorithms is derived from the minimization of a recursive-in-time cost function and then realized in an iterative decentralized manner. Specifically, the target location can be calculated iteratively by taking a weighted average of the local estimates based on the participating sensor nodes’ reliability information, where a participating sensor node computes the newest location estimate according to its own observation and the most recent local estimate passed from the previous participating sensor node. All the proposed schemes adopt an effective rule for updating the step size at each iteration and guarantee convergence to a stationary point, where every one of them is equivalent to the incremental subgradient method or the POCS method with an appropriate variable step size. Computer simulation results show that the proposed schemes have better location accuracy than previous related methods.
    To track a target in WSNs, we further propose a decentralized weighted extended Kalman filtering (WEKF) scheme for positioning and tracking, where a message-passing algorithm is adopted for inter-sensor-node communications and for adaptively selecting the participating sensor nodes as the target moves within the area of interest. During each iteration, the current participating sensor node computes a local estimate and passes it on to the next participating sensor node for further processing. The update process is circulated only among the selected participating sensor nodes that surround the target. A convergence analysis is given to show that the proposed WEKF-based method converges. Computer simulation results are also given to demonstrate the effectiveness of the proposed approach.

    Contents Abstract i Contents iii List of Figures v List of Tables viii Abbreviations ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Works 4 1.3 Contribution of the Dissertation 6 Chapter 2 Problem Formulations for Wireless Sensor Networks (WSNs) Positioning 9 2.1 Measurement Technuques 9 2.2 The Least-Squares (LS) Positioning Problem 11 2.3 The Convex Feasibility (CF) Positioning Problem 12 2.4 A Comparison of the LS and CF Positioning Problems 15 2.5 Summary 16 Chapter 3 Decentralized Algorithms for the LS Positioning Problem 17 3.1 The Incremental Subgradient (IG) Algorithm 18 3.2 The Proposed Recursive Least-Squares (RLS) Algorithm 19 3.3 The Proposed Reduced-Complexity RLS (RCRLS) Algorithm 24 3.4 The Proposed Message-Passing (MP) Algorithm for Target Positioning 25 3.5 Computer Simulation Results 30 3.6 Summary 33 Chapter 4 Decentralized Algorithms for the CF Positioning Problem 34 4.1 The Projection Onto Convex Sets (POCS) Algorithm 35 4.2 The Proposed Improved POCS (IPOCS) Algorithm Bsaed on RLS Optimization 37 4.3 The Proposed Recursive Weighted Least Absolute Value (RWLAV) Algorithm 43 4.4 Computer Simulation Results 47 4.5 Summary 57 Chapter 5 A Decentralized Weighted Extended Kalman Filtering (WEKF) Algorithm for Positioning and Tracking 58 5.1 The Proposed WEKF Algorithm 60 5.2 A Convergence Analysis for the WEKF Algorithm 66 5.3 The MP Algorithm for Target Tracking 68 5.4 Computer Simulation Results 69 5.5 Summary 79 Chapter 6 Conclusions 81 Appendix A Derivation of Distance Estimate Between the Target and Sensor Node i of (2.4) 82 Appendix B Derivation of Mean, Variance, and MSE of Distance Estimation Error of (4.2)–(4.4) 84 Appendix C Proof of Proposition 1 88 Appendix D Proof of Proposition 2 93 Bibliography 97 Publication List 103

    Bibliography
    [1]G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” ACM Commun., vol. 43, no. 5, pp. 551–558, May 2000.
    [2]J. A. Stankovic, “Wireless sensor networks,” IEEE Comput., vol. 41, no. 10, pp. 92–95, Oct. 2008.
    [3]C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor information networking architecture and applications,” IEEE Pers. Commun., vol. 8, no. 4, pp. 52–59, Aug. 2001.
    [4]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114, Aug. 2002.
    [5]V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of wireless sensor networks in smart grid,” IEEE Trans. Ind. Electron., vol. 57, no. 10, 3557–3564, Oct. 2010.
    [6]S. Oh, P. Chen, M. Manzo, and S. Sastry, “Instrumenting wireless sensor networks for real-time surveillance,” in Proc. 2006 IEEE Int. Conf. Robot. Autom. (ICRA 2006), Orlando, FL, May 2006, pp. 3128–3133.
    [7]M. J. Whelan, M. V. Gangone, and K. D. Janoyan, “Highway bridge assessment using an adaptive real-time wireless sensor network,” IEEE Sensors J., vol. 9, no. 11, 1405–1413, Nov. 2009.
    [8]Z. Zhao, G.-H. Yang, Q. Liu, V. O. K. Li, and L. Cui, “Implementation and application of a multi-radio wireless sensor networks testbed,” IET Wireless Sensor Syst., vol. 1, no. 4, 191–199, Dec. 2011.
    [9]N. Patwari, J. N. Ash, S. Kyperountas, A.O. Hero III, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69, July 2005.
    [10]G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization techniques,” Int. J. Comput. Netw., vol. 51, no. 10, pp. 2529–2553, Jul. 2007.
    [11]G. Wang and K. Yang, “A new approach to sensor node localization using RSS measurements in wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 10, no. 5, 1389–1395, May 2011.
    [12]T. Jia and R. M. Buehrer, “A set-theoretic approach to collaborative position location for wireless networks,” IEEE Trans. Mobile Comput., vol. 10, no. 9, pp. 1264–1275, Sept. 2011.
    [13]P. Bahl and V. N. Padmanabhan, “Radar: An in-building RF-based user location and tracking system,” in Proc. 2000 IEEE Int. Conf. Comput. Commun. Soc. (INFOCOM 2000), Tel-Aviv, Israel, Mar. 2000, pp. 775–784.
    [14]X. Li, “Collaborative localization with received signal strength in wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3807–3817, Nov. 2007.
    [15]H.-S. Ahn and W. Yu, “Environmental-Adaptive RSSI-Based Indoor Localization,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 4, pp. 626–633, Oct. 2009.
    [16]C.-H. Lu and L.-C. Fu, “Robust location-aware activity recognition using wireless sensor network in an attentive home,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 4, 598–609, Oct. 2009.
    [17]K. Kaemarungsi and P. Krishnamurthy, “Modeling of indoor positioning systems based on location fingerprinting,” in Proc. 2004 IEEE Int. Conf. Comput. Commun. Soc. (INFOCOM 2004), Hong Kong, China, Mar. 2004, pp. 1012–1022.
    [18]S.-P. Kuo, C.-Y. Lin, Y.-F. Lee, H.-W. Fang, Y.-W. Hong, H.-C. Lin, Y.-C. Tseng, C.-T. King, and C.-L. Wang, “The NTP experimental platform for heterogeneous wireless sensor networks,” in Proc. 2008 Int. Conf. Testbeds Res. Infrastructures for the Develop. of Netw. Communities (TRIDENTCOM 2008), Innsbruck, Austria, Mar. 2008.
    [19]S.-H. Jung, C.-O. Lee, and D.-S. Han, “Wi-Fi fingerprint-based approaches following log-distance path loss model for indoor positioning,” in Proc. 2011 IEEE MTT-S Int. Microw. Workshop Series Intell. Radio for Future Pers. Terminals (IMWS-IRFPT 2011), Daejeon, South Korea, Aug. 2011.
    [20]L. Gogolak, S. Pletl, and D. Kukolj, “Indoor fingerprint localization in WSN environment based on neural network,” in Proc. 2011 IEEE Int. Symp. Intell. Syst. Inform. (SISY 2011), Subotica, Serbia, Sept. 2007, pp. 293–296.
    [21]G. Welch and G. Bishop, “An introduction to the Kalman filter,” University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC, TR95-041, 1995.
    [22]Z. R. Zaidi and B. L. Mark, “Real-time mobility tracking algorithms for cellular networks based on Kalman filtering,” IEEE Trans. Mobile Comput., vol. 4, no. 2, 195–208, Mar./Apr. 2005.
    [23]Y. Zhai, M. B. Yeary, J. P. Havlicek, and G. Fan, “A new centralized sensor fusion-tracking methodology based on particle filtering for power-aware systems,” IEEE Trans. Instrum. Meas., vol. 57, no. 10, 2377–2387, Oct. 2008.
    [24]I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans. Autom. Control, vol. 54, no. 6, 1254–1269, Jun. 2009.
    [25]M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 798–808, Apr. 2005.
    [26]L. Doherty, B. A. Warneke, B. E. Boser, and K. S. J. Pister, “Energy and performance considerations for smart dust,” Int. J. Parallel Distrib. Syst. Netw., vol. 4, no. 3, pp. 121–133, Mar. 2001.
    [27]M. G. Rabbat and R. D. Nowak, “Decentralized source localization and tracking,” in Proc. 2004 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2004), Montreal, Canada, May 2004, pp. 921–924.
    [28]A. Nedic and D. P. Bertsekas, "Convergence rate of incremental subgradient algorithms," in Stochastic Optimization: Algorithms Appl., S. Uryasev and P. Pardalos, eds., Norwell, MA: Kluwer, 2000, pp. 263-304.
    [29]Q. Shi, C. He, and L. Jiang, “Normalized incremental subgradient algorithm and its application,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3759–3774, Oct. 2009.
    [30]D.-S. Wu and C.-L. Wang, “A reduced-complexity decentralized positioning and tracking algorithm for wireless sensor networks,” in Proc. 2010 IEEE Veh. Technol. Conf. - Spring (VTC 2010-Spring), Taipei, Taiwan, May 2010.
    [31]A. O. Hero III and D. Blatt, “Sensor network source localization via projection onto convex sets (POCS),” in Proc. 2005 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2005), Philadelphia, PA, Mar. 2005, pp. 1065–1068.
    [32]D. Blatt and A. O. Hero III, “Energy-based sensor network source localization via projection onto convex sets,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3614–3619, Sept. 2006.
    [33]J. Wang and P. A. Regalia, “Sensor network localization via boundary projections,” in Proc. 2009 IEEE Int. Conf. Inf. Sci. Syst. (CISS 2009), Baltimore, ND, Mar. 2009, pp. 224–229.
    [34]M. R. Gholami, H. Wymeersch, E. G. Ström, and M. Rydström, “Wireless network positioning as a convex feasibility problem,” EURASIP J. Wireless Commun. Netw., vol. 2011, no. 161, pp. 1–15, Nov. 2011.
    [35]Q. Shi and C. He, “Distributed source localization via projection onto the nearest local minimum,” in Proc. 2008 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2008), Las Vegas, NV, Apr. 2008, pp. 2553–2556.
    [36]C.-L. Wang, Y.-W. Hong, and Y.-S. Dai, “A decentralized positioning method for wireless sensor networks based on weighted interpolation,” in Proc. 2007 IEEE Int. Conf. Commun. (ICC 2007), Glasgow, Scotland, June 2007, pp. 3167–3172.
    [37]C.-L. Wang and D.-S. Wu, “Decentralized positioning and tracking based on a weighted incremental subgradient algorithm for wireless sensor networks,” in Proc. 2008 IEEE Veh. Technol. Conf. - Fall (VTC 2008-Fall), Calgary, Canada, Sept. 2008.
    [38]C.-L. Wang, Y.-S. Chiou, and Y.-S. Dai, “An adaptive location estimator based on Kalman filtering for wireless sensor networks,” in Proc. 2007 IEEE Veh. Technol. Conf. - Spring (VTC 2007-Spring), Dublin, Ireland, Apr. 2007, pp. 864–868.
    [39]D. P. Bertsekas, “Incremental least squares methods and the extended Kalman filter,” SIAM J. Optimization, vol. 6, no. 3, pp. 807–822, Aug. 1996.
    [40]D. P. Bertsekas, Nonlinear Programming. 2nd ed., MA: Athena Scientific, 1999.
    [41]J. C. Liberti and T. S. Rappaport, “Statistics of shadowing in indoor radio channels at 900 and 1900 MHz,” in Proc. 1992 IEEE Military Commun. Conf. (MILCOM 1992), San Diego, CA, Oct. 1992, pp. 1066–1070.
    [42]S. Phaiboon, “An empirically based path loss model for indoor wireless channels in laboratory building,” in Proc. 2002 IEEE Region Ten Conf. (TENCON 2002), Beijing, China, Oct. 2002, pp. 1020–1023.
    [43]A. Hills, J. Schlegel, and B. Jenkins, “Estimating signal strengths in the design of an indoor wireless network,” IEEE Trans. Wireless Commun., vol. 3, no. 1, 17–19, Jan. 2004.
    [44]G. L. Stüber, Principles of Mobile Communication. 2nd ed., Kluwer, MA, 2001.
    [45]T. S. Rappaport, Wireless Communications: Principles and Practice. 2nd ed., Prentice-Hall, NJ, 2002.
    [46]L. Klozar, J. Prokopec, S. Hanus, M. Slanina, and Z. Fedra, “Indoor channel modeling based on experience with outdoor urban measurement-Multislope modeling,” in Proc. 2011 Int. Conf. Microw., Commun., Antennas Electron. Syst. (COMCAS 2011), Tel Aviv, Israel, Nov. 2011.
    [47]N. Patwari, A. O. Hero, III, M. Perkins, N. S. Correal, and R. J. O’Dea, “Relative location estimation in wireless sensor networks,” IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2137–2148, Aug. 2003.
    [48]P. M. Clarkson, Optimal and Adaptive Signal Processing. Florida: CRC Press., 1993.
    [49]H. Stark and J. W. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
    [50]J. Proakis, Digital Communications, 4th ed., New York, NY: McGraw-Hill, 2001.
    [51]W. R. Wade, An Introduction to Analysis. 4th ed., NJ: Prentice-Hall, 2009.
    [52]A. Zemouche, M. Boutayeb, and G. I. Bara, “Observer design for nonlinear systems: An approach based on the differential mean value theorem,” in Proc. 2005 IEEE Conf. Decision Control, European Control Conf. (CDC-ECC 2005), Seville, Spain, Dec. 2005, pp. 6353–6358.
    [53]C.-L. Wang and D.-S. Wu, “Decentralized target tracking based on a weighted extended Kalman filter for wireless sensor networks,” in Proc. 2008 IEEE Global Commun. Conf. (GLOBECOM 2008), New Orleans, LA, Nov. 30–Dec. 4, 2008.
    [54]C.-L. Wang and D.-S. Wu, “Decentralized target positioning and tracking based on a weighted extended Kalman filter for wireless sensor networks,” accepted for publication (published online: Apr. 2013) in ACM/Springer Wireless Netw.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE