研究生: |
陳守廉 Chen, Shoul-Lian |
---|---|
論文名稱: |
矽橡膠-奈米碳管複合材的電熱效應 與壓阻效應及其應用 The Joule heat and piezoresistive effect of the silicone rubber-carbon nanotubes composites and their applications |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
劉榮添
Liu, Rong-Tian 蔡俊賢 Cai, Jun-Xian |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 矽橡膠 、奈米碳管 、複合材 、電熱效應 、壓阻效應 |
外文關鍵詞: | silicone rubber, carbon nanotubes, composites, Joule effect, piezoresistance effect |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽橡膠為現今常用之工程塑膠之一。矽橡膠優異的化學安定性、機械性質與生物相容性使其發展出各式各樣的商業用途,例如:封裝、管材、模具等等。奈米碳管自1991年被發現以來,由於其特殊的電導、熱導與機械性質使科學家爭相研究。本實驗針對上述材料,以三軸滾輪作為機械剪切力均勻混合得到奈米碳管-矽橡膠複合材,使絕緣的矽橡膠可以導電,並討論其機械強度、電性、電熱效應與壓阻性質。由於矽橡膠柔軟、親膚的特性,我們將此複合材製作成恆溫加熱裝置與穿戴式手部動作感應器。此實驗之恆溫加熱裝置以低功率方式儲存熱能並擁有高效率恆溫的優勢可應用於中醫熱墊及醫療用長照保暖設備。而穿戴式手部動作感應器則對於形變有極高的靈敏度也可應用於年長者居家感測器,例如裝置於拖鞋、運動鞋、木地板、座椅、床墊得以感測老人行動安全(跌倒、碰撞)或裝設於木地板、門窗取代傳統紅外線感應並提高保全防竊偵測能力。本實驗製程適合大量製造,具商業潛力及未來商品化價值。
Silicone rubber is one of the most common engineering plastics. Lots of related applications have been developed owing to its extraordinary chemical stability, mechanical property and biocompatibility, such as packaging and molding. On the other hand, since carbon nanotubes (CNTs) were discovered in 1991 scientists has made efforts to study tube properties and applications because of their fascinating electronic, thermal conductivity and mechanical strength. Study here focuses on silicone rubber-CNTs composites homogeneously mixed by shear stress driven three-roller device. Composites show joule heating effect and electro-resistive effect. We then design heating elements and finger motion detector based on composite; the former shows an efficient storage of heat energy at a low power input. The latter however behaves as good sensors upon straining. The fabrication here takes advantage for mass production, hence the potential in future applications.
[1] Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56.
[2] Bauhofer, W. and J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009. 69(10): p. 1486-1498.
[3] Xie, X.-L., Y.-W. Mai, and X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering: R: Reports, 2005. 49(4): p. 89-112.
[4] Zang, X., et al., Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 2015. 132: p. 192-206.
[5] Fung, C.K., et al. Fabrication of CNT-based MEMS piezoresistive pressure sensors using DEP nanoassembly. in Nanotechnology, 2005. 5th IEEE Conference on. 2005. IEEE.
[6] Dai, H., et al., Self-oriented bundles of carbon nanotubes and method of making same. 2001, Google Patents.
[7] Hayamizu, Y., et al., Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nature nanotechnology, 2008. 3(5): p. 289.
[8] Mancevski, V., Method for manufacturing carbon nanotubes as functional elements of MEMS devices. 2000, Google Patents.
[9] Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Elsevier.
[10] Dresselhaus, M. and P. Eklund, Phonons in carbon nanotubes. Advances in Physics, 2000. 49(6): p. 705-814.
[11] Hanada, T., Y. Okada, and K. Yase, Structure of Multi-Walled and Single-Walled Carbon Nanotubes. EELS Study, in The Science and Technology of Carbon Nanotubes. 1999, Elsevier. p. 29-39.
[12] Khoshnevisan, B., M.Y. Kachoei, and M. Mohammadi, Diameter and chirality effects of narrow SWCNTs on molecular hydrogenation. International Journal of Hydrogen Energy, 2013. 38(11): p. 4618-4621.
[13] Fard, A.K., et al., Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal. Chemosphere, 2016. 164: p.
64
142-155.
[14] Lu, J.P., Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 1997. 79(7): p. 1297.
[15] Yakobson, B.I., C. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Physical review letters, 1996. 76(14): p. 2511.
[16] Treacy, M.J., T. Ebbesen, and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381(6584): p. 678.
[17] Poncharal, P., et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes. science, 1999. 283(5407): p. 1513-1516.
[18] Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. science, 1997. 277(5334): p. 1971-1975.
[19] Salvetat, J.-P., et al., Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials, 1999. 11(2): p. 161-165.
[20] Yu, M.-F., et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000. 287(5453): p. 637-640.
[21] Ceulemans, A., et al., The electronic structure of polyhex carbon tori. The Journal of Chemical Physics, 2000. 112(9): p. 4271-4278.
[22] Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Physical review letters, 1992. 68(10): p. 1579.
[23] Hassanien, A., et al., Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes. Applied physics letters, 1999. 75(18): p. 2755-2757.
[24] Lambin, P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003. 4(9): p. 1009-1019.
[25] Kim, P., et al., Thermal transport measurements of individual multiwalled nanotubes. Physical review letters, 2001. 87(21): p. 215502.
[26] Berber, S., Y.-K. Kwon, and D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Physical review letters, 2000. 84(20): p. 4613.
[27] Hsu, C.-T., 奈米碳管的聲子, 吸附性質及其新穎的合成技術. 清華大學材料科學工程學系學位論文, 2008: p. 1-95.
[28] Zhang, Q., et al., Thermal conductivity of multiwalled carbon nanotubes. Physical
65
Review B, 2002. 66(16): p. 165440.
[29] Park, J.-H., et al., ITO/CNT Nano Composites as a Counter Electrode for the Dye-Sensitized Solar Cell Applications. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2011. 24(1): p. 76-80.
[30] Mehra, N. and N. Jain, Functionalized carbon nanotubes and their drug delivery applications. Section nanostructured drug delivery. Multi volume nanomedicine, 2014. 4: p. 327-9.
[31] Kumar, R., R.S. Tiwari, and O.N. Srivastava, Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale research letters, 2011. 6(1): p. 92.
[32] Christensen, R., Theory of viscoelasticity: an introduction. 2012: Elsevier.
[33] Zhang, H., et al., Recyclable Polydimethylsiloxane Network Crosslinked by Dynamic Transesterification Reaction. Scientific reports, 2017. 7(1): p. 11833.
[34] Callister, W.D., Fundamentals of materials science and engineering. Vol. 471660817. 2000: Wiley London.
[35] Quintanilla, J., Microstructure and properties of random heterogeneous materials: a review of theoretical results. Polymer Engineering & Science, 1999. 39(3): p. 559-585.
[36] Qian, D., et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied physics letters, 2000. 76(20): p. 2868-2870.
[37] Liu, G., A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Composite structures, 1997. 40(3-4): p. 313-322.
[38] Affdl, J. and J. Kardos, The HalpinTsai equations: a review. Polymer Engineering & Science, 1976. 16(5): p. 344-352.
[39] Cox, H., The elasticity and strength of paper and other fibrous materials. British journal of applied physics, 1952. 3(3): p. 72.
[40] Stassi, S., et al., Flexible tactile sensing based on piezoresistive composites: A review. Sensors, 2014. 14(3): p. 5296-5332.
[41] Dang, Z.-M., et al., Supersensitive linear piezoresistive property in carbon nanotubes∕ silicone rubber nanocomposites. Journal of Applied physics, 2008. 104(2): p. 024114.