簡易檢索 / 詳目顯示

研究生: 梁馨宜
Hsing-Yi Liang
論文名稱: 電晶體通道寬度對低溫複晶矽薄膜元件可靠度影響之研究
Study of Channel-width-dependent Reliability Behavior of LTPS TFTs
指導教授: 金雅琴
Ya-Chin King
林崇榮
Chrong-Jung Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 低溫複晶矽薄膜可靠度
外文關鍵詞: LTPS, TFT, reliability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 循序性側向結晶技術能有效增大複晶矽的晶粒尺寸及控制晶粒邊界的位置,以提升低溫複晶矽薄膜電晶體的性能。然而,由於循序性側向結晶和一般雷射結晶技術,所成長之晶粒型態不同,循序性側向結晶製程形成與通道長度方向平行之晶粒邊界,將影響元件之可靠度。本論文將探討hot carrier stress對於循序性側向結晶技術之複晶矽薄膜電晶體所造成的影響。由實驗結果顯示,經stress作用後,元件特性的衰退現象和其通道寬度有關。針對此結果,本篇論文提出一全新的衰退機制及電路模型來模擬其衰退行為,以充分預估元件特性在電路操作下的變化。


    Sequential lateral solidification (SLS) technology developed for crystallizing amorphous Si enlarges grain size and controls the position of grain boundaries effectively. However, thin-film transistors made by SLS suffer reliability issues possibly due to the innate sub-grain boundaries parallel to the drain current direction as a result of this unique solidification process. In this thesis, we observed channel-width-dependent degradation on these devices after hot carrier stress. A degradation model was proposed and verified by comparing the measured characteristic with the simulated behavior on the proposed sub-circuit, which successfully explains the degraded transistor behavior and its width dependence.

    摘要.................................................. i Abstract.............................................. ii 誌謝.................................................. iii 內文目錄.............................................. iv 附圖目錄.............................................. vi 表格目錄.............................................. ix 第一章 序論........................................... 1 1.1 研究動機.......................................... 1 1.2 章節介紹.......................................... 2 第二章 低溫複晶矽薄膜電晶體........................... 3 2.1 低溫複晶矽之結晶技術.............................. 3 2.1.1 固相結晶法..................................... 4 2.1.2 金屬引發側向結晶法............................. 4 2.1.3 準分子雷射結晶法............................... 5 2.1.4 循序性側向結晶法............................... 5 2.1.5 薄膜電晶體特性之比較........................... 6 2.2 低溫複晶矽薄膜電晶體之可靠度...................... 8 2.2.1 熱載子效應..................................... 8 2.2.2 駝峰效應....................................... 9 2.3 總結.............................................. 10 第三章 循序性側向結晶之複晶矽薄膜電晶體的可靠度....... 15 3.1 元件結構.......................................... 15 3.2 基本元件特性...................................... 16 3.3 實驗結果及討論.................................... 16 3.3.1 Hot Carrier Stress對於通道寬度的影響........... 16 3.3.2 環境溫度對於經Hot Carrier Stress後之元件特性的影 響............................................. 19 3.3.3 高溫活化作用對於次臨界特性衰退現象恢復的影響... 19 3.4 總結.............................................. 20 第四章 通道寬度對於元件次臨界特性衰退之模擬........... 46 4.1 電阻網絡模型...................................... 46 4.1.1 次晶粒邊界之電阻衰退模型....................... 47 4.1.2 電阻網絡模型之模擬結果......................... 48 4.2 電晶體網絡模型.................................... 48 4.2.1 複晶矽薄膜電晶體之HSPICE模型................... 49 4.2.2 電晶體網絡模型之組成........................... 49 4.2.3 次晶粒邊界電晶體之衰退模型..................... 50 4.2.4 電晶體網絡模型之模擬結果及討論................. 51 4.3 總結.............................................. 52 第五章 結論........................................... 72 第六章 Future Work.................................... 73 參考文獻.............................................. 74

    [1] I.W. Wu, “Low temperature poly-Si technology for AMLCDs,” AM-LCD, pp. 7-10, 1995.
    [2] F. Hayashi, et. al., “A high performance polysilicon TFT sing RTA and plasma hydrogenation applicable to highly stable SRAMs of 16Mbit and beyond,” in Symp. On VLSI Technology, pp.36-37, 1992.
    [3] J.H. Lee, et. al., “A new poly-Si TFT current-mirror pixel for Active Matrix Organic Light Emitting Diode,” EEE Electron Device Lett., vol. 27, no.10, pp. 830-833, 2006.
    [4] T. Noma, et. al.,“Crystal forms by solid-state recrystallization of amorphous Si films on SiO2,” Appl. Phys. Lett., vol. 59, no. 6, pp.653-655, 1991.
    [5] S. W. Lee, et. al.,“Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 4, pp. 160-162, 1996.
    [6] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys., vol. 73, no.12, pp. 8279-8289, 1993.
    [7] Alain C. K. Chan, et. al., “Effects of dopants on the electrical behavior of grain boundary in metal-induced crystallized polysilicon film,” IEEE, Trans. Electron Devices, vol. 52, no. 8, pp.1917-1919, 2005.
    [8] T. Sameshima, et. al., “XeCl excimer laser annealing used to fabricate poly-Si TFT’s,” Jpn. J. Appl. Phys. vol. 28, no. 10, pp.1789-1793, 1989.
    [9] T. Sameshima, et. al., “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276-278, 1986.
    [10] J. S. Im, et. al., “On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films,” Appl. Phys. Lett., vol. 64, no. 17, pp.2303-2305, 1994.
    [11] J. S. Im, et. al., “Sequential lateral solidification of thin silicon films on SiO2,” Appl. Phys. Lett., vol. 69, no. 19, pp.2864-2866, 1996.
    [12]M. A. Crowder, et. al., “Sequential lateral solidification processing for polycrystalline Si TFTs” IEEE, Trans. Electron Devices, vol. 51, no. 4, pp.560-568, 2004.
    [13] M. A. Crowder, et. al., “Low-temperature single-crystal Si TFT’s fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett., vol. 19, no. 8, pp. 306-308, 1998.
    [14] G. A. Bhat, et. al., “Effects of longitudinal grain boundaries on the performance of MILC-TFT’s,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 97-99, 1999.
    [15] K. M. Chang, et. al., “Anomalous variations of off-state leakage current in poly-Si TFT under static stress,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 255-257, 2002.
    [16] C. A. Dimitriadis, et. al., “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors,” Solid-State Electronics, 44, pp.2045-2051, 2000.
    [17] F. V. Farmakis s, et. al., “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, no. 2, pp. 74-76, 2001.
    [18] K. M. Chang, et. al., “Enhanced degradation in polycrystalline silicon thin-film transistors under dynamic hot-carrier stress,” IEEE Electron Device Lett., vol. 22, no. 10, pp. 475-477, 2001
    [19] Y. Uraoka, et. al., “Hot carrier effects in low-temperature polysilicon thin-film transistors,” Jpn. J. Appl. Phys. vol. 40, Part 1, no. 4B, pp.2833-2836, 2001.
    [20] T. Yoshida, et. al., “Grain-boundary related hot carrier degradation mechanism in low-temperature polycrystalline silicon thin-film transistors,” Jpn. J. Appl. Phys. vol. 42, Part 1, no. 4B, pp.1999-2003, 2003.
    [21]鍾元鴻, “Analysis on degradation mechanism and development of novel high performance device structures for low temperature polycrystalline silicon thin film transistors,” 交通大學電子所, 博士論文, 2002
    [22] M. Kimura, et. al., “Current density enhancement at active layer edges in polycrystalline silicon thin-film transistors,” Jpn. J. Appl. Phys. vol. 40, Part 2, no. 1A/B, pp.L26-L28, 2001.
    [23] W. Y. Huang, et. al., “Electrical characteristics study of edgeless structure on P-type low temperature poly-Si TFT,” AM-LCD, pp. 159-162, 2001.
    [24] W. C. Chan, et. al., “The effects of grain boundaries in the electrical characteristics of large grain polycrystalline thin-film transistors,” IEEE, Trans. Electron Devices, vol. 49, no. 8, pp.1384-1391, 2002.
    [25] Star-Hspice Manual, Release 2001.2, Avant! Corporation, 2001, ch.22, pp.182
    [26] M. D. Jacunski, et. al., “A short-channel DC SPICE model for polysilicon thin-film transistors including temperature effects,” IEEE, Trans. Electron Devices, vol. 46, no. 6, pp.1146-1158, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE