簡易檢索 / 詳目顯示

研究生: 張明偉
Chang, Ming-Wei
論文名稱: RGD小分子藥物合併低劑量紫杉醇誘導人類神經膠母細胞瘤凋亡
Combination of RGD Compound and Low-Dose Paclitaxel Induces Apoptosis in Human Glioblastoma Cells
指導教授: 莊淳宇
Chuang, Chun-Yu
口試委員: 江啟勳
羅建苗
黃鈺軫
洪雪芬
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 112
中文關鍵詞: 人類神經膠母細胞瘤RGD小分子藥物紫杉醇細胞凋亡
外文關鍵詞: Glioblastoma, RGD peptide, Paclitaxel, Caspase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織最新公布的癌症報告,腦癌發生率占所有癌症的1.8%(直腸癌9.2%,乳癌25.2%),看似不高的發生率,但是將近100%的最終致死率佔癌症前10名 。行政院衛生署癌病登記統計,台灣每年約有600位原發性惡性腦瘤新病例,佔所有惡性腫瘤發生個案的1.03%。人類多型性神經膠母細胞瘤(glioblastoma multiforme, GBM),約佔所有惡性腦瘤60%,是最常見的成人原發惡性腦瘤。目前,臨床對於人類多型性神經膠母細胞瘤的治療方式為放射線治療、外科手術切除,以及合併化學藥物治療。然而,人類多型性神經膠母細胞瘤生長速率快,具高度組織浸潤性(infiltrative),導致治療效率不佳。
    組合蛋白(integrin)表現在細胞表面,負責細胞訊號傳遞的穿膜蛋白質受器,由α及β鏈組成的蛋白二聚體。Integrin-αvβ3活化主要參與腫瘤組織血管新生(neovasculature / angiogenesis)及腫瘤細胞轉移。目前已知生化合成的RGD (Arg-Gly-Asp)胜肽小分子藥物可以與integrin-αvβ3專一性結合,進而達到抑制血管新生的效果。但是,腫瘤細胞專一性受體-integrin-αvβ3的表現量不足會影響RGD小分子藥物的標靶治療效率。本研究以低劑量癌症治療藥物紫杉醇(Paclitaxel, PTX)進行人類多型性神經膠母細胞瘤U87MG細胞株前處理,以誘導integrin-αvβ3在腫瘤細胞上的表現增加,接著應用單環結構c(RGDyK)與雙環結構E[c(RGDyK)]2兩種生化合成之RGD小分子藥物進行標靶治療,以期達到增加RGD小分子藥物的治療效率。
    人類多型性神經膠母細胞瘤U87MG細胞,給予12小時10 nM低劑量紫杉醇前處理,顯著增加integrin-αvβ3受器表現,提供更多與RGD胜肽結合位置。接著給予RGD胜肽處理後,可觀察到U87MG細胞存活率下降。另外,在低劑量紫杉醇前處理合併RGD胜肽處理之組別,參與細胞凋亡的半胱天蛋白酶(caspase) -3,-8,-9基因表現量明顯高於單一給予紫杉醇或RGD胜肽處理的組別。給予caspase抑制劑,觀察到U87MG細胞經由合併PTX及E[c(RGDyK)]2處理後的外在細胞凋亡路徑caspase-3,-8,-9被專一性抑制。
    本研究發現低劑量紫杉醇的前處理可以促進人類多型性神經膠母細胞瘤U87MG細胞integrin-αvβ3表現,進而增加與RGD胜肽專一性鍵結,提高RGD胜肽小分子標靶藥物促進U87MG細胞凋亡之成效。


    According to the latest World Health Organization report, the incidence of brain tumor constitutes 1.8% of all cancer cases lower than other cancers (e.g., colorectal cancer, 9.2%; breast cancer, 25.2%); however, the final mortality close to 100% is firmly in the top 10 cancers. Currently, the standard therapeutic strategies for GBM include palliative care, radiation therapy, and surgery in combination with anti-cancer drugs. However, this malignant brain tumor is well known for its highly invasive behavior and typically responds poorly to conventional cytotoxic therapy.
    Integrins are a family of transmembrane adhesion proteins that mediate cell adhesion and intracellular signaling. Integrin-αvβ3 is expressed on the surface of human glioblastoma multiforme (GBM) cells, and can be further induced by chemical or bio-mechanical stress. As a primary receptor of extracellular matrix adhesion molecules, integrin-αvβ3 acts as a crucial transducer to regulate cell signaling to die. The Arg-Gly-Asp (RGD) motif-containing peptides are specifically bound to integrin-αvβ3, and potential to inhibit neovasculature underlying competition to normal extracellular matrix proteins. This study employed two types of RGD peptides, cyclic RGD (c(RGDyK)) and bi-cyclic RGD (E[c(RGDyK)]2), to human GBM U87MG cells with the combination of low-dose Paclitaxel (PTX) pre-treatment to examine augmentation of therapeutic activity for RGD peptide-induced apoptosis. The docking simulation represented that both c(RGDyK) peptide and E[c(RGDyK)]2 peptide had better avidity and specificity to integrin-αvβ3 attachment (Ligscore 296.04 vs. 245.89).
    Human GBM U87MG cells were treated with RGD peptides in the absence or presence of initial exposure to low-dose 10 nM PTX. Results showed that integrin-αvβ3 expressing on the surface of U87MG cells was induced by 10 nM PTX pre-treatment for 12 hrs. Additionally, the U87MG cells pretreated with PTX and followed by RGD peptides exhibited greater expression of caspases-3, -8 and -9 genes than those merely treated with single agent of PTX or RGD peptide. Furthermore, the caspase-3, -8 and -9 inhibitor presented significant protection against E[c(RGDyK)]2 peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-αvβ3 was correlated with the enhanced apoptosis in U87MG cells.
    This study proposes a novel method of targeting integrin-αvβ3 with RGD peptides in combination with low-dose PTX pre-treatment to improve the efficiency of human GBM treatment.

    Table of content 標題 授權書 指導教授推薦書 考試委員會審定書 Part I Combination of RGD Compound and Low-Dose Paclitaxel Induces Apoptosis in Human Glioblastoma Cells 1 中文摘要 2 Abstract 4 Chapter 1 Introduction 1.1 Glioblastoma multiforme (GBM) 6 1.2 Current practical therapeutic modalities in clinical application and limitations of GBMs 8 1.2.1 Radiation therapy of GBM 8 1.2.2 Limitations of current used chemodrugs in GBM therapy 9 1.3 Paclitaxel (PTX) 10 1.4 Integrins 11 1.4.1 Integrin-αvβ3 and angiogenesis 14 1.4.2 Integrin-mediated cellular signaling 15 1.4.3 Integrin-αvβ3 signaling and RGD peptide antagonization 17 1.5 Apoptosis pathway 18 1.5.1 Extrinsic caspase pathway (death receptor pathway) 19 1.5.2 Intrinsic caspase pathway (mitochondria pathway) 19 1.6 Summary 21 Chapter 2 Material and methods 2.1 Cell culture 24 2.2 Docking of RGD peptides 25 2.3 Cell treatment 26 2.4 Determination of integrin-αvβ3 expression 26 2.5 Immunofluorescence staining of integrin-αvβ3 27 2.6 Viability assay 27 2.7 Determination of cell cycle and apoptosis 28 2.8 Reverse transcription polymerase chain reaction (RT-PCR) 29 2.9 Quantitative real time PCR (QPCR) 29 2.10 Neutralized effect of caspase inhibitors on RGD-induced apoptosis in U87MG cells pre-treated with low-dose PTX 30 2.11 Statistical analysis 31 Chapter 3 Results 3.1 RGD peptide docking simulation 32 3.2 PTX induced integrin-αvβ3 expression and cell cycle effect 33 3.3 Cytotoxic and apoptotic effects of PTX and RGD peptides on U87MG cells 37 3.4 Gene expression of caspase signaling regulated by PTX and RGD peptide 40 Chapter 4 Discussion 44 Chapter 5 Conclusion 51 Chapter 6 Recommendation of future work 52 References 55 List of Tables and Figures Table 1 WHO grading of tumors of central nervous system and current treatments for malignant gliomas 7 Table 2 Chemodrugs of GBM therapy approved by FDA 9 Table 3 Integrins receptors and their ligands 13 Table 4 Primers used in real time PCR analysis 30 Figure 1 Schematic view of fibronectin bound to integrin at the cell surface 12 Figure 2 The process of angiogenesis 15 Figure 3 Apoptosis signaling 20 Figure 4 Flowchart of experimental procedures in the current work 23 Figure 5 Schematic illustration of chemical structures and docking stimulation outlining 33 Figure 6 Expression of surface integrin-αvβ3 in U87MG cells with the treatment of 10 nM PTX 35 Figure 7 Evaluation of cell cycle arrest in low-dose PTX responsive U87MG cells 36 Figure 8 Cytotoxicity of U87MG cells treated with RGD peptide or the combination of PTX and RGD peptide was quantified using MTT assay 38 Figure 9 Cytometric analysis of apoptosis events in U87MG cells treated with PTX, RGD peptides or the combination treatment 39 Figure 10 Quantitative expression of caspase genes in U87MG cells treated with PTX, RGD peptides or the combination treatment 41 Figure 11 Neutralized effect of caspase-3, -8 and -9 inhibitors on the caspase mRNA expression induced by PTX and RGD peptide 43 Figure 12 Apoptotic pathway of the combination treatment 50 Part II Bioaerosols from a Food Waste Composting Plant Affect Remodeling Genes in Human Airway Epithelial Cells 66 中文摘要 67 Abstract 69 Chapter 1 Introduction 1.1 Bioaerosol 71 1.2 Endotoxin 72 1.3 Aspergillus 73 1.4 Respiratory system and its related remodeling genes 75 Chapter 2 Material and methods 2.1 Field sampling of airborne bioaerosols 79 2.2 Culture of microorganisms from the composting facility 80 2.3 Endotoxin detection 81 2.4 Identification of Aspergillus fumigatus (A. fumigatus) 82 2.5 Cell culture of human airway epithelial cells 83 2.6 Preparation of A. fumigatus / field bioaerosols conditioned medium 83 2.7 Determination of pro-inflammatory cytokine IL-6 protein 84 2.8 Quantitative real time PCR for gene expression 85 2.9 Statistical analysis 86 Chapter 3 Results 3.1 Quantification of A. fumigatus 87 3.2 Microbe concentrations in different areas of the composting plant 88 3.3 Airborne particle concentration and endotoxin levels in the composting plant 90 3.4 IL-6 secretion in NCI-H292 cells exposed to a conditioned medium of field bioaerosol samples 91 3.5 Exposure to bioaerosol or A. fumigatus mediated gene expression 92 Chapter 4 Discussion 94 Chapter 5 Conclusion 99 Chapter 6 Recommendation of future work 102 References 105 List of Tables and Figures Table 5 Primers used in real time PCR analysis 86 Table 6 Medium concentrations of airborne bacteria detected at various location of the composting plant 89 Table 7 Average concentration of endotoxin in airborne sampled coarse and fine airborne particles 90 Figure 13 Structures of conidiophores, vesicles and conidia of Aspergillus species 74 Figure 14 Flowchart of experimental procedures in the current work 77 Figure 15 Layout of sampling pots of the food waste composting plant 80 Figure 16 Distribution of microorganisms in the composting hall, maintenance and restaurant 89 Figure 17 IL-6 secretion of NCI-H292 cells cultured with field bioaerosol samples 92 Figure 18 Quantitative expression of remodel genes in NCI-H292 cells treated with control group, standard A. fumigatus or field bioaerosol samples for 24 hrs 93 Figure 19 A possible mechanism of airway remodeling genes in response to bioaersol exposure in the composting hall 101

    1. Hou, L. C.; Veeravagu, A.; Hsu, A. R.; Tse, V. C., Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurgical Focus 2006, 20, (4), E5.
    2. Jakubowicz-Gil, J.; Langner, E.; Badziul, D.; Wertel, I.; Rzeski, W., Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine 2013, 34, (4), 2367-78.
    3. Wen, P. Y.; Kesari, S., Malignant gliomas in adults. The New England journal of Medicine 2008, 359, (5), 492-507.
    4. 腦癌之診斷與治療共識. National Health Research Institutes 2004.
    5. Dubrow, R.; Darefsky, A. S., Demographic variation in incidence of adult glioma by subtype, United States, 1992-2007. BioMedical Central Cancer 2011, 11, 325.
    6. Nicholas, M. K.; Lukas, R. V.; Chmura, S.; Yamini, B.; Lesniak, M.; Pytel, P., Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Seminars in Oncology 2011, 38, (2), 243-53.
    7. States, C. B. T. R. o. t. U., CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004-2008. 2012, 58.
    8. Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R. C.; Ludwin, S. K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J. G.; Eisenhauer, E.; Mirimanoff, R. O.; European Organisation for, R.; Treatment of Cancer Brain, T.; Radiotherapy, G.; National Cancer Institute of Canada Clinical Trials, G., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine 2005, 352, (10), 987-96.
    9. Rulseh, A. M.; Keller, J.; Klener, J.; Sroubek, J.; Dbaly, V.; Syrucek, M.; Tovarys, F.; Vymazal, J., Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World Journal of Surgical Oncology 2012, 10, 220.
    10. Buckner, J. C.; Ballman, K. V.; Michalak, J. C.; Burton, G. V.; Cascino, T. L.; Schomberg, P. J.; Hawkins, R. B.; Scheithauer, B. W.; Sandler, H. M.; Marks, R. S.; O'Fallon, J. R., Phase III trial of carmustine and cisplatin compared with carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: North Central Cancer Treatment Group 93-72-52 and Southwest Oncology Group 9503 Trials. Journal of Clinical Oncology 2006, 24, (24), 3871-9.
    11. Ng, S. S.; Gao, Y.; Chau, D. H.; Li, G. H.; Lai, L. H.; Huang, P. T.; Huang, C. F.; Huang, J. J.; Chen, Y. C.; Kung, H. F.; Lin, M. C., A novel glioblastoma cancer gene therapy using AAV-mediated long-term expression of human TERT C-terminal polypeptide. Cancer Gene Therapy 2007, 14, (6), 561-72.
    12. Bruce, J. N.; Talavera, F.; McKenna, R., Glioblastoma Multiforme Treatment & Management. eMedicine Medscape 2013.
    13. Guerin, R. A.; Chenal, C.; Pardieu, P., [Radiotherapy of non-surgical, primary tumor of the brain in adults]. Neuro-Chirurgie 1975, 21, (5), 404-7.
    14. Stupp, R.; Tonn, J. C.; Brada, M.; Pentheroudakis, G.; Group, E. G. W., High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO 2010, 21 Suppl 5, v190-3.
    15. Clarke, J.; Butowski, N.; Chang, S., Recent advances in therapy for glioblastoma. Archives of Neurology 2010, 67, (3), 279-83.
    16. Kim, Y.; Kim, K. H.; Lee, J.; Lee, Y. A.; Kim, M.; Lee, S. J.; Park, K.; Yang, H.; Jin, J.; Joo, K. M.; Lee, J.; Nam, D. H., Wnt activation is implicated in glioblastoma radioresistance. Laboratory Investigation; a Journal of Technical Methods and Pathology 2012, 92, (3), 466-73.
    17. Erickson, L. C., The role of O-6 methylguanine DNA methyltransferase (MGMT) in drug resistance and strategies for its inhibition. Seminars in Cancer Biology 1991, 2, (4), 257-65.
    18. Le Calve, B.; Rynkowski, M.; Le Mercier, M.; Bruyere, C.; Lonez, C.; Gras, T.; Haibe-Kains, B.; Bontempi, G.; Decaestecker, C.; Ruysschaert, J. M.; Kiss, R.; Lefranc, F., Long-term in vitro treatment of human glioblastoma cells with temozolomide increases resistance in vivo through up-regulation of GLUT transporter and aldo-keto reductase enzyme AKR1C expression. Neoplasia 2010, 12, (9), 727-39.
    19. Chamberlain, M. C., Bevacizumab for the treatment of recurrent glioblastoma. Clinical Medicine Insights. Oncology 2011, 5, 117-29.
    20. Zhang, G.; Huang, S.; Wang, Z., A meta-analysis of bevacizumab alone and in combination with irinotecan in the treatment of patients with recurrent glioblastoma multiforme. Journal of Clinical Neuroscience : Official Journal of the Neurosurgical Society of Australasia 2012, 19, (12), 1636-40.
    21. Friedman, H. S.; Prados, M. D.; Wen, P. Y.; Mikkelsen, T.; Schiff, D.; Abrey, L. E.; Yung, W. K.; Paleologos, N.; Nicholas, M. K.; Jensen, R.; Vredenburgh, J.; Huang, J.; Zheng, M.; Cloughesy, T., Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology 2009, 27, (28), 4733-40.
    22. Kenig, S.; Alonso, M. B.; Mueller, M. M.; Lah, T. T., Glioblastoma and endothelial cells cross-talk, mediated by SDF-1, enhances tumour invasion and endothelial proliferation by increasing expression of cathepsins B, S, and MMP-9. Cancer Letters 2010, 289, (1), 53-61.
    23. Lucio-Eterovic, A. K.; Piao, Y.; de Groot, J. F., Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research 2009, 15, (14), 4589-99.
    24. Haar, C. P.; Hebbar, P.; Wallace, G. C. t.; Das, A.; Vandergrift, W. A., 3rd; Smith, J. A.; Giglio, P.; Patel, S. J.; Ray, S. K.; Banik, N. L., Drug resistance in glioblastoma: a mini review. Neurochemical Research 2012, 37, (6), 1192-200.
    25. Ruiz-Sanchez, D.; Calero, M. A.; Sastre-Heres, A. J.; Garcia, M. T.; Hernandez, M. A.; Martinez, F. M.; Pena-Diaz, J., Effectiveness of the bevacizumab-irinotecan regimen in the treatment of recurrent glioblastoma multiforme: Comparison with other second-line treatments without this regimen. Oncology Letters 2012, 4, (5), 1114-1118.
    26. Ogawa, K.; Ishiuchi, S.; Inoue, O.; Yoshii, Y.; Saito, A.; Watanabe, T.; Iraha, S.; Toita, T.; Kakinohana, Y.; Ariga, T.; Kasuya, G.; Murayama, S., Phase II trial of radiotherapy after hyperbaric oxygenation with multiagent chemotherapy (procarbazine, nimustine, and vincristine) for high-grade gliomas: long-term results. International Journal of Radiation Oncology, Biology, Physics 2012, 82, (2), 732-8.
    27. Terasaki, M.; Abe, T.; Miyagi, N.; Ogo, E.; Shigemori, M., Feasibility and response to 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride chemotherapy with pre-treated procarbazine for elderly patients with newly diagnosed glioblastoma. Journal of Neuro-Oncology 2007, 81, (3), 265-9.
    28. Rozental, J. M.; Cohen, J. D.; Mehta, M. P.; Levine, R. L.; Hanson, J. M.; Nickles, R. J., Acute changes in glucose uptake after treatment: the effects of carmustine (BCNU) on human glioblastoma multiforme. Journal of Neuro-Oncology 1993, 15, (1), 57-66.
    29. Vogelhuber, W.; Spruss, T.; Bernhardt, G.; Buschauer, A.; Gopferich, A., Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts. International Journal of Pharmaceutics 2002, 238, (1-2), 111-21.
    30. Wang, T. H.; Wang, H. S.; Soong, Y. K., Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000, 88, (11), 2619-28.
    31. Andre, N.; Braguer, D.; Brasseur, G.; Goncalves, A.; Lemesle-Meunier, D.; Guise, S.; Jordan, M. A.; Briand, C., Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells'. Cancer Research 2000, 60, (19), 5349-53.
    32. Downing, K. H., Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annual Review of Cell and Developmental Biology 2000, 16, 89-111.
    33. Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T., Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Medicinal Research Reviews 1998, 18, (4), 259-96.
    34. Fibronectin and integrin. Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Bioinfomatics, Univ of Illinois at Urbana-Champaign 2010.
    35. Barczyk, M.; Carracedo, S.; Gullberg, D., Integrins. Cell and Tissue Research 2010, 339, (1), 269-80.
    36. Giancotti, F. G.; Ruoslahti, E., Integrin signaling. Science 1999, 285, (5430), 1028-32.
    37. Stupack, D. G.; Cheresh, D. A., Get a ligand, get a life: integrins, signaling and cell survival. Journal of Cell Science 2002, 115, (Pt 19), 3729-38.
    38. Ramage, L., Integrins and extracellular matrix in mechanotransduction. Cell Health and Cytoskeleton 2011, 2012: 4, 9.
    39. Harburger, D. S.; Calderwood, D. A., Integrin signalling at a glance. Journal of Cell Science 2009, 122, (Pt 2), 159-63.
    40. Folkman, J., Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine 1971, 285, (21), 1182-6.
    41. Jain, R. K.; di Tomaso, E.; Duda, D. G.; Loeffler, J. S.; Sorensen, A. G.; Batchelor, T. T., Angiogenesis in brain tumours. Nature Reviews. Neuroscience 2007, 8, (8), 610-22.
    42. Brooks, P. C.; Clark, R. A.; Cheresh, D. A., Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994, 264, (5158), 569-71.
    43. Mahabeleshwar, G. H.; Feng, W.; Phillips, D. R.; Byzova, T. V., Integrin signaling is critical for pathological angiogenesis. The Journal of Experimental Medicine 2006, 203, (11), 2495-507.
    44. Joe, D.; Geoff, D. A., The truth about angiogenesis. 2012.
    45. Zoppi, N.; Barlati, S.; Colombi, M., FAK-independent alphavbeta3 integrin-EGFR complexes rescue from anoikis matrix-defective fibroblasts. Biochimica et Biophysica Acta 2008, 1783, (6), 1177-88.
    46. Ip, Y. T.; Davis, R. J., Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Current Opinion in Cell Biology 1998, 10, (2), 205-19.
    47. Scatena, M.; Almeida, M.; Chaisson, M. L.; Fausto, N.; Nicosia, R. F.; Giachelli, C. M., NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. The Journal of Cell Biology 1998, 141, (4), 1083-93.
    48. Stromblad, S.; Becker, J. C.; Yebra, M.; Brooks, P. C.; Cheresh, D. A., Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. The Journal of Clinical Investigation 1996, 98, (2), 426-33.
    49. Gamble, J. R.; Sun, W. Y.; Li, X.; Hahn, C. N.; Pitson, S. M.; Vadas, M. A.; Bonder, C. S., Sphingosine kinase-1 associates with integrin {alpha}V{beta}3 to mediate endothelial cell survival. The American Journal of Pathology 2009, 175, (5), 2217-25.
    50. Stupack, D. G., Integrins as a distinct subtype of dependence receptors. Cell Death and Differentiation 2005, 12, (8), 1021-30.
    51. Stupack, D. G.; Cheresh, D. A., Integrins and angiogenesis. Current Topics in Developmental Biology 2004, 64, 207-38.
    52. Maubant, S.; Saint-Dizier, D.; Boutillon, M.; Perron-Sierra, F.; Casara, P. J.; Hickman, J. A.; Tucker, G. C.; Van Obberghen-Schilling, E., Blockade of alpha v beta3 and alpha v beta5 integrins by RGD mimetics induces anoikis and not integrin-mediated death in human endothelial cells. Blood 2006, 108, (9), 3035-44.
    53. Evans, E. A.; Calderwood, D. A., Forces and bond dynamics in cell adhesion. Science 2007, 316, (5828), 1148-53.
    54. Lai, T. H.; Fong, Y. C.; Fu, W. M.; Yang, R. S.; Tang, C. H., Stromal cell-derived factor-1 increase alphavbeta3 integrin expression and invasion in human chondrosarcoma cells. Journal of Cellular Physiology 2009, 218, (2), 334-42.
    55. Chatterjee, S.; Matsumura, A.; Schradermeier, J.; Gillespie, G. Y., Human malignant glioma therapy using anti-alpha(v)beta3 integrin agents. Journal of Neuro-Oncology 2000, 46, (2), 135-44.
    56. Hadden, H. L.; Henke, C. A., Induction of lung fibroblast apoptosis by soluble fibronectin peptides. American Journal of Respiratory and Critical Care Medicine 2000, 162, (4 Pt 1), 1553-60.
    57. Menendez, J. A.; Vellon, L.; Mehmi, I.; Teng, P. K.; Griggs, D. W.; Lupu, R., A novel CYR61-triggered 'CYR61-alphavbeta3 integrin loop' regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene 2005, 24, (5), 761-79.
    58. Sheppard, D., Functions of pulmonary epithelial integrins: from development to disease. Physiological Reviews 2003, 83, (3), 673-86.
    59. Mulgrew, K.; Kinneer, K.; Yao, X. T.; Ward, B. K.; Damschroder, M. M.; Walsh, B.; Mao, S. Y.; Gao, C.; Kiener, P. A.; Coats, S.; Kinch, M. S.; Tice, D. A., Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin. Molecular Cancer Therapeutics 2006, 5, (12), 3122-9.
    60. Reardon, D. A.; Nabors, L. B.; Stupp, R.; Mikkelsen, T., Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opinion on Investigational Drugs 2008, 17, (8), 1225-35.
    61. Haas, M. J., Integrins' prime syndecan. Sciencr Bussiness eXchange 2009, 12, 1-3.
    62. Eisele, G.; Wick, A.; Eisele, A. C.; Clement, P. M.; Tonn, J.; Tabatabai, G.; Ochsenbein, A.; Schlegel, U.; Neyns, B.; Krex, D.; Simon, M.; Nikkhah, G.; Picard, M.; Stupp, R.; Wick, W.; Weller, M., Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. Journal of Neuro-Oncology 2014, 117, (1), 141-5.
    63. Kerr, J. F.; Wyllie, A. H.; Currie, A. R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 1972, 26, (4), 239-57.
    64. Norbury, C. J.; Hickson, I. D., Cellular responses to DNA damage. Annual Review of Pharmacology and Toxicology 2001, 41, 367-401.
    65. Elmore, S., Apoptosis: a review of programmed cell death. Toxicologic Pathology 2007, 35, (4), 495-516.
    66. Tait, S. W.; Green, D. R., Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews. Molecular Cell Biology 2010, 11, (9), 621-32.
    67. Igney, F. H.; Krammer, P. H., Death and anti-death: tumour resistance to apoptosis. Nature reviews. Cancer 2002, 2, (4), 277-88.
    68. Rai, N. K.; Tripathi, K.; Sharma, D.; Shukla, V. K., Apoptosis: a basic physiologic process in wound healing. The International Journal of Lower Extremity Wounds 2005, 4, (3), 138-44.
    69. Chen, X.; Hou, Y.; Tohme, M.; Park, R.; Khankaldyyan, V.; Gonzales-Gomez, I.; Bading, J. R.; Laug, W. E.; Conti, P. S., Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2004, 45, (10), 1776-83.
    70. Boatright, K. M.; Salvesen, G. S., Mechanisms of caspase activation. Current Opinion in Cell Biology 2003, 15, (6), 725-31.
    71. Kim, R.; Emi, M.; Tanabe, K., Caspase-dependent and -independent cell death pathways after DNA damage (Review). Oncology Reports 2005, 14, (3), 595-9.
    72. Meng, X. Y.; Zhang, H. X.; Mezei, M.; Cui, M., Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design 2011, 7, (2), 146-57.
    73. Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M., LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics & Modelling 2003, 21, (4), 289-307.
    74. Huang, T. C.; Huang, H. C.; Chang, C. C.; Chang, H. Y.; Ou, C. H.; Hsu, C. H.; Chen, S. T.; Juan, H. F., An apoptosis-related gene network induced by novel compound-cRGD in human breast cancer cells. Federation of European Biochemical Societies Letters 2007, 581, (18), 3517-22.
    75. Lengauer, T.; Rarey, M., Computational methods for biomolecular docking. Current Opinion in Structural Biology 1996, 6, (3), 402-6.
    76. Kanu, O. O.; Mehta, A.; Di, C.; Lin, N.; Bortoff, K.; Bigner, D. D.; Yan, H.; Adamson, D. C., Glioblastoma multiforme: a review of therapeutic targets. Expert Opinion on Therapeutic Targets 2009, 13, (6), 701-18.
    77. Reardon, D. A.; Wen, P. Y., Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 2006, 11, (2), 152-64.
    78. Stupp, R.; Dietrich, P. Y.; Ostermann Kraljevic, S.; Pica, A.; Maillard, I.; Maeder, P.; Meuli, R.; Janzer, R.; Pizzolato, G.; Miralbell, R.; Porchet, F.; Regli, L.; de Tribolet, N.; Mirimanoff, R. O.; Leyvraz, S., Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. Journal of Clinical Oncology 2002, 20, (5), 1375-82.
    79. Mrugala, M. M.; Chamberlain, M. C., Mechanisms of disease: temozolomide and glioblastoma--look to the future. Nature clinical practice. Oncology 2008, 5, (8), 476-86.
    80. Ohka, F.; Natsume, A.; Wakabayashi, T., Current trends in targeted therapies for glioblastoma multiforme. Neurology Research International 2012, 2012, 878425.
    81. Lanni, J. S.; Lowe, S. W.; Licitra, E. J.; Liu, J. O.; Jacks, T., p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proceedings of the Nationall Academy Sciences 1997, 94, (18), 9679-83.
    82. Trusolino, L.; Serini, G.; Cecchini, G.; Besati, C.; Ambesi-Impiombato, F. S.; Marchisio, P. C.; De Filippi, R., Growth factor-dependent activation of alphavbeta3 integrin in normal epithelial cells: implications for tumor invasion. The Journal of Cell Biology 1998, 142, (4), 1145-56.
    83. Liu, Z.; Liu, S.; Wang, F.; Chen, X., Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers. European Journal of Nuclear Medicine and Molecular Imaging 2009, 36, (8), 1296-307.
    84. Tseng, S. H.; Bobola, M. S.; Berger, M. S.; Silber, J. R., Characterization of paclitaxel (Taxol) sensitivity in human glioma- and medulloblastoma-derived cell lines. Neuro-Oncology 1999, 1, (2), 101-8.
    85. Heimans, J. J.; Vermorken, J. B.; Wolbers, J. G.; Eeltink, C. M.; Meijer, O. W.; Taphoorn, M. J.; Beijnen, J. H., Paclitaxel (Taxol) concentrations in brain tumor tissue. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO 1994, 5, (10), 951-3.
    86. Banno, A.; Ginsberg, M. H., Integrin activation. Biochemical Society Transactions 2008, 36, (Pt 2), 229-34.
    87. Zhou, X.; Li, J.; Kucik, D. F., The microtubule cytoskeleton participates in control of beta2 integrin avidity. The Journal of Biological Chemistry 2001, 276, (48), 44762-9.
    88. Puklin-Faucher, E.; Vogel, V., Integrin activation dynamics between the RGD-binding site and the headpiece hinge. The Journal of Biological Chemistry 2009, 284, (52), 36557-68.
    89. Kong, F.; Garcia, A. J.; Mould, A. P.; Humphries, M. J.; Zhu, C., Demonstration of catch bonds between an integrin and its ligand. The Journal of Cell Biology 2009, 185, (7), 1275-84.
    90. Creagh, E. M.; Martin, S. J., Caspases: cellular demolition experts. Biochemical Society Transactions 2001, 29, (Pt 6), 696-702.
    91. Kurenova, E.; Xu, L. H.; Yang, X.; Baldwin, A. S., Jr.; Craven, R. J.; Hanks, S. K.; Liu, Z. G.; Cance, W. G., Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Molecular and Cellular Biology 2004, 24, (10), 4361-71.
    92. Buckley, C. D.; Pilling, D.; Henriquez, N. V.; Parsonage, G.; Threlfall, K.; Scheel-Toellner, D.; Simmons, D. L.; Akbar, A. N.; Lord, J. M.; Salmon, M., RGD peptides induce apoptosis by direct caspase-3 activation. Nature 1999, 397, (6719), 534-9.
    93. Park, S. J.; Wu, C. H.; Gordon, J. D.; Zhong, X.; Emami, A.; Safa, A. R., Taxol induces caspase-10-dependent apoptosis. The Journal of Biological Chemistry 2004, 279, (49), 51057-67.
    94. Karmakar, S.; Banik, N. L.; Ray, S. K., Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice. Cancer 2008, 112, (3), 596-607.
    95. Lu, Y.; Yang, J.; Sega, E., Issues related to targeted delivery of proteins and peptides. American Association of Pharmaceutical Scientists Journal 2006, 8, (3), E466-78.
    96. Chamberlain, M. C.; Cloughsey, T.; Reardon, D. A.; Wen, P. Y., A novel treatment for glioblastoma: integrin inhibition. Expert Review of Neurotherapeutics 2012, 12, (4), 421-35.
    97. Liu, S.; Wang, J.; Niu, W.; Liu, E.; Wang, J.; Peng, C.; Lin, P.; Wang, B.; Khan, A. Q.; Gao, H.; Liang, B.; Shahbaz, M.; Niu, J., The beta6-integrin-ERK/MAP kinase pathway contributes to chemo resistance in colon cancer. Cancer Letters 2013, 328, (2), 325-34.
    98. Vellon, L.; Menendez, J. A.; Liu, H.; Lupu, R., Up-regulation of alphavbeta3 integrin expression is a novel molecular response to chemotherapy-induced cell damage in a heregulin-dependent manner. Differentiation; Research in Biological Diversity 2007, 75, (9), 819-30.
    99. Kim, J. H.; Zheng, L. T.; Lee, W. H.; Suk, K., Pro-apoptotic role of integrin beta3 in glioma cells. Journal of Neurochemistry 2011, 117, (3), 494-503.
    100. Tabatabai, G.; Tonn, J. C.; Stupp, R.; Weller, M., The role of integrins in glioma biology and anti-glioma therapies. Current Pharmaceutical Design 2011, 17, (23), 2402-10.
    101. Burke, P. A.; DeNardo, S. J.; Miers, L. A.; Lamborn, K. R.; Matzku, S.; DeNardo, G. L., Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Research 2002, 62, (15), 4263-72.
    102. Goodman, S. L.; Holzemann, G.; Sulyok, G. A.; Kessler, H., Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins. Journal of Medicinal Chemistry 2002, 45, (5), 1045-51.
    103. Vermorken, J. B.; Peyrade, F.; Krauss, J.; Mesia, R.; Remenar, E.; Gauler, T. C.; Keilholz, U.; Delord, J. P.; Schafhausen, P.; Erfan, J.; Brummendorf, T. H.; Iglesias, L.; Bethe, U.; Hicking, C.; Clement, P. M., Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilengitide in recurrent/metastatic squamous cell carcinoma of the head and neck: results of the randomized phase I/II ADVANTAGE trial (phase II part). Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO 2014, 25, (3), 682-8.
    104. Schnell, O.; Pfirrmann, D.; Albrecht, V.; Eigenbrod, S.; Tonn, J. C.; Schichor, C., Integrin alpha v beta 3 (αvβ3) expression and MGMT promoter methylation in patients with glioblastoma. German Society of Neurosurgery 2013, 64th Annual Meeting of the German Society of Neurosurgery.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE