研究生: |
薛婉君 Wan-Jyun Syue |
---|---|
論文名稱: |
0.35um製程之橫向金氧半場效電晶體特性分析 The Characteristic Analyses of 0.35um Process LDMOSFETs |
指導教授: |
龔正
Jeng Gong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 串聯電阻 、汲極導致能障下降 、橫向式金氧半場效電晶體 |
外文關鍵詞: | on-resistance, DIBL, LDMOSFETs |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文是以0.35um製程之橫向金氧半場效電晶體為主體,分成量測與模擬兩個部分的特性來探討分析,ㄧ是使用HP4156及Keithley 236量測元件的Id-Vd、Id-Vg曲線來分析導通電阻的組成及DIBL特性參數的萃取,另ㄧ方面是以台積電目前已生產0.35um製程的高壓元件,使用Tsuprem4及Medici模擬軟體進行部份結構調整,期許能達到更佳的效果。
In this thesis, the investigation subject is lateral diffusion metal-oxide-silicon field effect transistor fabricated with 0.35um process technologies. It is divided into two sections, namely measurement and simulation. The former part is fulfilled by measuring the Id-Vd and Id-Vg curves with HP4156 and Keithley 236 systems in order to analyze the components’ electrical properties such as on-resistance and breakdown voltage as well as to extract characteristic parameter of DIBL. On the other hand, TCAD tools like Tsuprem4[1] and Medici [2]are used to modulate some portion of the device structure with a well-built 0.35um high voltage process technology to optimize the device performance. Satisfactory results are obtained.
[1] AVANT! TSUPREM-4, Two-Dimensional Process Simulation Program,Version-2000.4.0
[2] AVANT! MEDICI, Two-Dimensional Device Simulation Program, Version-2000.4.0
[3] Ayhan A. Mutlu, Mahmud Rahman, “Two-Dimensional Analytical Model for Drain Induced Barrier Lowering (DIBL) in Short Channel MOSFETs,” in Proc. IEEE Southeastcon, pp. 340-344, 2000.
[4] J. D. Kendall, A. R. Boothroyd, “A two-Dimensional Analytical Threshold Voltage Model for MOSFETs with Arbitrarily Doped Substrates,” IEEE Trans. Electron Devices, vol.EDL-7, no.7, July 1986.
[5] R. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering,” IEEE Trans. Electron Devices, vol. ED-26, P.461, 1979.
[6] C.L. Zhu, Rusli, J. Almira, C.C. Tin, S.F. Yoon and J. Ahn, “Physical Simulation of Drain-Induced Barrier Lowering Effect IN SiC MESFETs,” Materials Science Forum, vol.483, p849-852, 2005.
[7] Michael J. Van der Tol and Savvas G. Chamberlain, “Drain-Induced Barrier Lowering in Buried-Channel MOSFETs,” IEEE Trans. Electron Devices, vol.40, no.4, p741-749, April 1993
[8] Jiunn-Yann Tsai, Jie Sun, Kam F. Yee and Carlton M. Osburn, “DIBL Considerations of Extended Drain Strcture for 0.1um MOSFETs,” IEEE Trans. Electron Devices, vol.17, no7, p331-333, July 1996.
[9] M. Jamal Deen, Z. X. Yan, “DIBL in Short-Channel NMOS Devices at 77K,” IEEE Trans. Electron Devices, vol.39, no.4, April 1992.
[10] M. Jamal Deen, Z. X. Yan, “Substrate Bias Effects on Drain-Induced Barrier Lowering in Short-Channel PMOS Devices,” IEEE Trans. Electron Devices, vol.37, no.7, July 1990.
[11] Qingyan Liu, Takayasu Sakurai and Toshiro Hiramoto, “Optimum Device Consideration for Standby Power Reduction Scheme Using Drain-Induced Barrier Lowering,” Jpn. J. Appl. Phys., vol.42, pp. 2171-2175, Part 1, no.4B, April 2002.
[12] Ching-Sung Lee, Wei-Chou Hsu, Chang-Luen Wu, “Analytic Modeling for Drain-Induced Barrier Lowering Phenomenon of the InGaP/InGaAs/GaAs Pseudomorphic Doped-Channel Field-Effect Transistor,” Jpn. J. Appl. Phys., vol.41, pp. 5919-5923, Part 1, no. 10, October 2002.
[13] Sangsu Park, Hyunsik Im, Ilgweon Kim and Toshiro Hiramoto, “Impact of Drain Induced Barrier Lowering on Read Scheme in Silicon Nanocrystal Memory with Two-Bit-Cell Operation,” The Japan Society of Applied Physics, vol.45, no.2A, pp638-642, 2006.
[14] C.L. Zhu, Rusli, C.C. Tin, S.F. Yoon and J. Ahn, ” Drain-Induced Barrier Lowering Effect and Its Dependence on Channel Doping in SiC MESFETs”, Proc. 7th IEEE Int. Conf. Solid-State and Integrated-Circuit Technology (ICSICT), Beijing, China, vol. 3 (2004) 2309-2312.
[15]Michael S. Adler, King W. Owyang, and B. Jayant Baliga, ”The Evolution of Power Devices Technology,” IEEE Trans. Electron Devices, vol.ED-31, pp.1570-1591.no.1984.
[16] S. Hidalgo, J. Fernandez, P. Godignon, J. Rebollo, and J. Millan, ” Power Lateral Dmos Transistor Test Sturctures,” ICMTS, vol.6, pp33-38, March, 1993.
[17] Robert F. Pirret, ” Semiconductor Devices Fundamentals,” copyright 1996 by Addison-Wesley Publishing Company, Inc.
[18] S. Colak, B. Singer, E. Stupp, ” Lateral Dmos Power Transistor Design,” IEEE Electron Device Letters, vol.EDL-1, pp.51-53, 1980.
[19] R. Jayaraman, V. Rumennik, B. Singer, E. H. Stupp, “Comparison of high voltage devices for power integrated circuits ”, IEDM, vol. 30,pp. 258-261, 1984.
[20] Dieter K. Schroder, ”Semiconductor Material and Device Characterization,” John Wiley & Sons, 223-237, 1998.
[21] Morikazu Tsuno, Masato Suga, Masayasu Tanaka, Kentaro Shibahara, “Physically-Based Threshold Voltage Determination for MOSFETs of All Gate Lengths,” IEEE Trans. Electron Devices, vol.46, no.7, p1429-1433, July 1999.
[22]Adriaan W. Ludikhuize, “Performance and Innovative Trends in RESURF ”, ESSDERC 2001 , pp. 35-44, Sep. 2001.
[23]J. A. Appeals, and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices)”, IEDM Tech. Dig., pp. 238-239, 1979.
[24] B.J. Baliga, “Power Semiconductor Devices”, PWS. Publishing company, 1995.
[25] T. A. Fjeldly, M. Shur, “Threshold Voltage Modeling and the Subthreshold Regime of Operation of Short-Channel MOSFETs”, IEEE Transactions on Electron Devices, vol. 40, no.1, p.137, January 1993.
[26] W. Fikry, G. Ghibaudo and M.Dutoit, “Temperature Dependence of Drain-induced Barrier Lowering in deep submicrometre MOSFETs,” Electronics Letters, vol. 30, no.11,pp. 911-912, 1994.
[27] Nian Yang, W. Kirklen Henson, and Jimmie J. Wortman, “A Comparative Study of Gate Direct Tunneling and Drain Leakage Currents N-MOSFETs with Sub-2-nm Gate Oxides,” IEEE Trans. Electron Devices, vol.47, no.8, Auguest 2000.
[28] Zhigang Wang, Chris G. Parker, Dexter W. Hodge, Robert T. Croswell, Nian Yang, Veena Misra, John R. Hauser, “Effect of Polysilicon Gate Type on the Flatband Voltage Shift for Ultrathin Oxide-Nitride Gate Stacks,” IEEE Trans. Electron Devices, vol.21, no.4, April 2000.