簡易檢索 / 詳目顯示

研究生: 林士涵
Lin, Shih-Han
論文名稱: 具矽奈米晶體之環繞式閘極超薄多晶矽P型電晶體和記憶體的研究
Gate-All-Around Ultra-Thin P-channel Poly-Si TFT Functioning as Transistor and Flash Memory with Silicon Nanocrystals
指導教授: 吳永俊
口試委員: 蔡宗鳴
林育賢
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 59
中文關鍵詞: 薄膜電晶體非揮發性記憶體環繞式閘極P型快閃記憶體
外文關鍵詞: Thin-Film Transistor, Ultra thin body, p-channel flash memory
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文的研究主題為具矽奈米晶體之環繞式閘極超薄複晶矽奈米線P型電晶體和快閃記憶體的研究,論文中提出簡易且不需額外光罩的超薄主動層製作方式。本篇使用環繞式閘極之奈米線以及超薄主動層結構來增強閘極控制能力,抑制短通道效應,降低漏電流。其中有三種結構的比較,分別為:邊緣主動層厚度為超薄3nm且為Ω閘極形狀的平面結構,主動層為超薄厚度5nm環繞式閘極矽奈米線,以及主動層厚度為25nm的三向閘極結構。其中邊緣主動層厚度為超薄3nm且為Ω閘極形狀的平面結構,其特性次臨界擺幅(subthreshold swing)可達88mV/decade,電流開關比(On/Off current ratio)可達108。
    對於記憶體而言,環繞式閘極還有增強穿隧氧化層電場和抑制閘極注入的優點,但是增強穿隧氧化層電場會使元件的可靠度下降。因此,應用矽奈米晶體為電荷儲存層以增加記憶體的可靠度;由於矽奈米晶體與氧化矽的傳導帶差值大於氮化矽與氧化矽的傳導帶差值,所以更增加此元件資料保持能力。本篇亦包含P型快閃記憶體操作方式,分別為FN穿隧以及帶隊帶穿隧的比較。其中顯示相較於FN使用大電壓穿隧,帶對帶穿隧可利用低電壓操作來使電子注入,而且同時兼具良好的可靠度。
    超薄主動層具有陡峭的次臨界擺幅,高的電流開關比,較不明顯的汲極電壓引發通道位能障璧降低之效應(DIBL),較大的驅動電流。其中邊緣為Ω閘極形狀的平面結構,以及環繞式閘極矽奈米線具有快速寫入速度還有良好的可靠度。本文所提出的超薄主動層製作方式,製程簡單且不需要額外光罩,並符合目前快閃記憶體的製程,顯示出擁有成為未來3D高密度快閃記憶體的潛力。


    A novel Gate-All-Around (GAA) Ultra-Thin Body (UTB) P-channel poly-Si TFT functioning as transistor and flash memory with Silicon-Nanocrystals (NCs) have been successfully demonstrated. The proposed fabrication to form UTB is simple and without extra masks. Applying Gate-All-Around structure of the nanowires and Ultra-Thin Body structure enhance gate control ability, and suppress short-channel effects, including lowering the leakage. Three structures are compared, Edge Ω-gate planar with edge ultra thin 3nm-thickness body , GAA NW with ultra thin 5nm-thickness body, and Tri-gate NW with 25nm-thickness body. For the edge 3-nm-thick channel devices (the Edge Ω-gate planar), the S.S. can reach 88 mV/decade and Ion/Ioff ratio can achieve more than 108.
    To memory, using Gate-All-Around structure enhances the tunneling oxide electric field, and suppresses the gate injection. But with enhancing the tunneling oxide electric field, the reliability becomes worse. In order to improve reliability, silicon-Nanocrystals charge trapping layer is applied. Due to the difference of conduction band between Silicon-Nanocrystals and silicon oxide would be enlarged, so it has improved the data retention.
    The thesis is operating in p-channel Flash memory. The operations, including Fowler-Nordheim (FN) Tunneling and Band-To-Band Tunneling Induced Hot Electron Injection (BTBTIHE) are compared. And it shows extreme low applied voltage for band-to-band-tunneling-induced hot electron injection tunneling (BBHE) operation and excellent retention are proposed.
    The UTB devices are with steeper S.S., higher Ion/Ioff ratio, smaller DIBL and larger driving current than planar TFTs. The GAA and Edge Ω-gate planar structure with Si NCs NVM performs great P/E speed and good reliability. The process of the ultra-thin channel is simple with mask free and highly compatible with the current flash process, which is highly promised for the future 3D stacked high-density applications.

    Abstract (Chinese) ----------------------------------------------------------------------------- i Abstract (English) ---------------------------------------------------------------------------- iii Acknowledge -------------------------------------------------------------------------------- v Contents ---------------------------------------------------------------------------------------- vi Table Captions ------------------------------------------------------------------------------ viii Figure Captions ------------------------------------------------------------------------------- ix Chapter 1 Introduction -------------------------------------------------------------------- 1 1.1 The development of Three Dimensional Thin Film Transistor ------------------------- 1 1.2 The structure of Ultra Thin Body of Semiconductor -------------------------------------2 1.3 Historical Perspective to Non-Volatile Memories---------------------------------------- 2 1.3.1 Introduction to SONOS NVM---------------------------------------------------------4 1.3.2 Introduction to Gate-All-Around(GAA) & Nanowires-----------------------------5 1.3.3 Introduction to Nanocrystal NVM-----------------------------------------------------6 1.3.4 Introduction to P-channel NVM-------------------------------------------------------7 1.4 Motivation ---------------------------------------------------------------------------------------- 8 Chapter 2 Basic Mechanisms and Reliability of Thin-Film Transistor and Flash Memory ---------------------------------------------------------------------------------20 2.1 Extraction of Thin Film Transistor Electrical Parameters -------------------------- 20 2.1.1 Definition of the Threshold Voltage (Vth)----------------------------------------20 2.1.2 Determination of the Substhreshold Swing (S.S.)--------------------------------20 2.1.3 Determination the ratio of ON-current /OFF-current ---------------------------21 2.1.4 Drain Induced Barrier Lowering (DIBL) -----------------------------------------21 2.2 Basic Mechanisms of P-channel Memory--------------------------------------------------- 22 2.2.1 Program Mechanism----------------------------------------------------------------- 23 2.2.1.1 Fowler-Nordheim (FN) Tunneling------------------------------------------------23 2.2.1.2 Band-To-Band Tunneling Induced Hot Electron Injection------------------- 24 2.2.2 Erase Mechanism---------------------------------------------------------------------24 2.2.2.1 Fowler-Nordheim (FN) Tunneling------------------------------------------------25 2.2.2.2 Edge Fowler-Nordheim (FN) Tunneling-----------------------------------------25 2.2.3 Compared the operation mechanism of N-channel and P-channel----------------25 2.2.3.1 Fowler-Nordheim (FN) Tunneling------------------------------------------------26 2.2.3.2 Band-To-Band Tunneling Effect--------------------------------------------------26 2.3 Basic Reliability of Flash Memory-----------------------------------------------------------27 2.3.1 Retention --------------------------------------------------------------------------------- 27 2.3.2 Endurance -------------------------------------------------------------------------------- 28 Chapter 3 Device Fabrication ------------------------------------------------------------------- 37 Chapter 4 Characteristics of Gate-All-Around poly-Si Nanowires P-channel TFT with Ultra-thin body ------------------------------------------------------------------------ 43 4.1 Introduction ------------------------------------------------------------------------------------- 43 4.2 Results and Discussions ---------------------------------------------------------------------- 43 Chapter 5 Characteristics of Gate-All-Around poly-Si Nanowires P-channel Flash Memory with Ultra-thin body ------------------------------------------------------ 48 5.1 Introduction ----------------------------------------------------------------------------------- 48 5.2 Results and Discussions -------------------------------------------------------------------48 Chapter 6 Conclusion -------------------------------------------------------------------------------55 Reference ------------------------------------------------------------------------------------------------ 56

    Chapter 1
    [1-1]. H.Tanaka, M.Kido, K.Yahashi*, et al. “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory” VLSI, pp.14 – 15, 2007
    [1-2]. Chenming Calvin Hu ,”Modern Semiconductor Devices for Integrated Circuits” Pearson Education, Inc pp.295-296, 2010
    [1-3]. Bio KIM, Seung-Hyun LIM, et al. “Investigation of Ultra Thin Polycrystalline Silicon” Reliability Physics Symposium (IRPS), IEEE International, pp. 2E.4.1 - 2E.4.4, 2011
    [1-4]. Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti “Introduction to Flash Memory,” Proc. IEEE 91, 489–502, 2003.
    [1-5]. K. Kahng and S. Sze, "A floating gate and its application to memory devices," IEEE Transactions on Electron Devices, vol. 14, pp. 629-629, 1967.
    [1-6]. Frohman-Bentchkowsky, D.FAMOS”A new semiconductor charge storage device” Solid State Electronics. 17,517.(1974)
    [1-7]. Harari E., Schmitz L., Troutman B., and Wang S., “A 256 bit nonovolatile static RAM,” IEEE ISSCC Tech. Dig., pp. 152, 1978..
    [1-8]. Kynett V.N., Baker A., Frandrich M., Hoekstra G.,Jungroth O., Kreifels J., and Wells S., “ An in-system reprogrammable 256K CMOS Flash memory”, ISSCC Tec. Dig., pp.132, 1988.
    [1-9]. B. De Salvo, C. Gerardi, R. van Schaijk, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps,” IEEE Transactions on Devices and Materials reliability, vol. 4, pp. 377-389, 2004.
    [1-10]. Wegener H. A. R. et al, “The variable threshold transistor, a newly electrically alterable nondestructive read-only storage device,” IEDM Tech. Dig. 1967.
    [1-11]. F. R. Libsch and M. H. White, “Charge transport and storage of low programming voltage SONOS/MONOS memory devices,” Solid-State Electron., vol. 33, pp. 105—126, 1990.
    [1-12]. M. H. White, Y. Yang, A. Purwar, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Comp., Packag., Manufact. Technol. A, vol. 20, pp. 190-195, June 1997.
    [1-13]. M. K. Cho and D. M. Kim, “High Performance SONOS Memory Cells Free of Drain Turn-On and Over-Erase: Compatibility Issue with Current Flash Technology,” IEEE Electron Device Letters, vol. 21, no. 8, Aug 2000.
    [1-14]. Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei, “High-performance nonvolatile HfO2 nanocrystal memory,” IEEE Electron Device Letters, vol. 26, no. 3, pp. 154-156, Mar. 2005.
    [1-15] B. Eitan, R. Kazerounian, A. Roy, G. Crisenza, P. Cappelletti, A. Modelli, W. Inc, and C. Fremont, “Multilevel flash cells and their trade-offs,” IEDM Tech. Dig., pp. 169-172, 1996.
    [1-16] C. Y. Lu, K. Y. Hsieh, and Rich Liu, “Future challenges of flash memory technologies,” Microelectronic Engineering vol. 86, no. 3, pp. 283-286, 2009.
    [1-17]. Navab Singh, Kavitha D. Buddharaju, S. K. Manhas, A. Agarwal, Subhash C. Rustagi, G. Q. Lo, N. Balasubramanian, and Dim-Lee Kwong, “Si, SiGe Nanowire Devices by Top-Down Technology and Their Applications,” IEEE Transactions on Electron Devices, vol. 55, No. 11, pp. 3107, 2008.
    [1-18]. Po-Chun Huang, Lu-An Chen, and Jeng-Tzong Sheu, “Electric-Field Enhancement of a Gate-All-Around Nanowire Thin-Film Transistor Memory,” IEEE Electron Device Letters, vol. 31, No. 3, pp.216, 2010.
    [1-19]. J. Fu, N. Singh, K. D. Buddharaju, S. H. G. Teo, C. Shen, Y. Jiang, C. X. Zhu, M. B. Yu, G. Q. Lo, N. Balasubramanian, D. L. Kwong, E. Gnani, and G. Baccarani, “Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell,” IEEE Electron Device Letters, vol. 29, No. 5, pp. 518, 2008.
    [1-20]. J.Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo, and D. L. Kwong, “Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture,” IEEE Electron Device Letters, vol. 30, No. 3, 2009.
    [1-21]. Shih-Ching Chen, et al., “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels,” Applied Physics Letters, 90, 122111, 2007.
    [1-22]. Tsung-Yu Chiang, Tien-Sheng Chao, Yi-Hong Wu, and Wen-Luh Yang, “High-Program/Erase-Speed SONOS With In Situ Silicon Nanocrystals,” IEEE Electron Device Letters, vol. 29, No. 10, pp. 1148, 2008.
    [1-23]. Mei-Chun Liu, et al., “SONOS memories with embedded silicon nanocrystals in nitride,” Semicond. Sci. Technol., 23, 075033, 2008.
    [1-24]. Tsung-Yu Chiang, et al., “Characteristics of SONOS-Type Flash Memory With In Situ Embedded Silicon Nanocrystals,” IEEE Trans. Electron Devices, vol. 57, NO. 8, 2010.
    [1-25]. T. Ohnakado , K. Mitsunaga , M. Nunoshita , H. Onoda , K. Sakakibara , N. Tsuji , N. Ajika , M. Hatanaka , and H. Miyoshi , “ Novel Electron Injection Method Using Band - to – Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a p - Channel Cell, ” IEDM Tech. Dig ., pp. 279 – 282 , 1995 .
    [1-26]. H.Kume, H.Yamamoto, T.Adachi, T.Hagiwara, K.Komori, T.Nishimoto, A.Koike, S.Meguro, T.Hayashida and T.Tsukada, "A FLASH-ERASE EEPROM CELL WITH AN ASYMMETRIC SOURCE AND DRAIN STRUCTURE," IEDM Tech. Dig., 1987, p.560
    Chapter 2
    [2-1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, vol. 85, pp. 1248, 1997.
    [2-2] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, ch. 3, p.59, 1991.
    [2-3] S. M. SZE, KWOK K. NG, “Physics of Semiconductor Devices” 3rd Ed., ch. 6, New Jersey: Wiley-InterScience, 2007
    [2-4]. M. Lenzlinger, “Fowler-Mordheim Tunneling in thermal grown SiO2”, Appl. Phys. Lett., vol. 40, pp. 278-283, 1969.
    [2-5] Joe E. Brewer and Manzur Gill “ Nonvolatile Memory Technologiees with Emphasis on Flash. “ ch 8, New Jersey, 2008
    [2-6]. I. C. Chen, C. Kaya and J. Paterson, “Band-to-band tunneling induced substrate
    hot-electron (BBISHE) injection: A new programming mechanism for nonvolatile
    memory devices,” IEDM, pp.263, 1989.
    [2-7]. K. Tamer San, Cetin Kaya, and T. P. Ma, “Effects of Erase Source Bias On Flash EPROM Device Reliability”, Transactions on Electron Devices, vol. 42, pp.150, 1995.
    [2-8]. Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Viscontio, “Introduction to Flash memory,” Proceedings of the IEEE, vol. 91, pp.489,2003.
    [2-9]. P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” IEDM Tech. Dig., pp. 291–294, 1994.
    [2-10]. Roberto Bez, Emilic Camerlenghi, Alberto Modelli, and Angelo Visconti,
    “Introduction to Flash Memory,” Proc. IEEE, vol. 91, pp. 489-502, 2003.
    Chapter 5
    [5-1] Min-Feng Hung, Yung-Chun Wu,and Zih-Yun Tang, et al. “High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory” APL 2011
    [5-2] M. T. Wu et al., ED, vol. 54, p. 699, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE