研究生: |
余建源 Yu, Jian-Yuan |
---|---|
論文名稱: |
聯三伸苯衍生物之分子堆疊與光學性質間的相關性之研究 Correlation between Morphologies and Optical Properties of Triphenylene-derivative |
指導教授: |
鄭建鴻
Cheng, Chien-Hong 陳俊顯 Chen, Chun-hsien |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 原子力顯微鏡 、藍色螢光材料 、有機發光二機體 |
外文關鍵詞: | Atomic force microscopy, Blue-light emitters, Bistriphenylenyl, Organic light-emitting diodes, Phenylene-substituents |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,多共軛且平面的分子易形成結晶,不利於organic light-emitting diodes (OLEDs)材料上的應用。而2,2’-bistriphenylenyl (BTP)、1,4-di(triphenylen-2-yl)benzene (T1)及4,4’-di(triphenylen-2-yl)biphenyl (T2)這三個TP衍生物都是沒有取代基的多苯環、共平面分子,從X-ray單晶繞射的結果看出BTP和T1都是共平面結構,顯示此類分子容易形成結晶相,但從元件的製成結果看來三者都是優異的藍色螢光分子。透過原子力顯微鏡(atomic force microscopy, AFM)、理論計算及光激放光 (photoluminescence,PL)、電激放光(electroluminescence,EL)光譜的研究,瞭解分子堆疊及薄膜形態與光學性質間的相關性,發現這三個分子在蒸鍍成膜後會因為分子的聚集,使得元件放光波長會在藍光區域。也因為分子本身的立體障礙,減弱分子間的□□□ 作用力,因此可以抑制自淬熄(self-quenching)或自吸收(self-absorption) 等消光現象產生,使得這三個分子作為OLEDs的放光層都讓元件有好的效能。
比較BTP、T1和T2三者的化學結構,在T1及T2中,兩個發射團以phenylene及biphenylene作為架橋基,並提供立體障礙的來源,抑制分子的緊密堆疊。我們從AFM及PL、EL光譜證實如此的分子設計概念得以有效控制放光層薄膜更趨於均相的形態,抑制元件中非放光(radiationless)機制的產生,對於OLED元件的效能有更進一步的提昇。
It is generally believed conjugated and planar molecules that are appropriate for light-emitting diodes (OLEDs) application due to strong intermolecular □□□ stacking and induce self-absorption. The triphenylene (TP)-derivatives, 2,2’-bistriphenylenyl (BTP), 1,4-di(triphenylen-2-yl)benzene (T1) and 4,4’-di(triphenylen-2-yl)biphenyl (T2), are all sp2-hybridized polyaromatic compounds without derivatization. Also, X-ray crystallographic results of BTP and T1 crystals show the chemical structure are coplanar, indicative of a likely tendency toward self-quenching. Surprisingly, The device layouts prove the three compounds are excellent blue emitters. To correlate, AFM, theoretical calculation, and luminescence spectra are used to study the correlation between optical properties and the film morphology. AFM reveals grainy nanoaggregates of the emitting layer in the device based on the three TP-derivatives as emitters. The molecular aggregation makes ensembles of the emitters luminesce deep blue light. The small torsion barrier to rotate the TP rings suggest that these compounds adopt a range of dihedral angles which confer steric hinderance on molecular packing. Therefore, self-quenching and self-absorption are obstructed in the OLED device.
Comparing BTP, T1, and T2-nased devices, the EQE increases with the number of phenylene inserted between two TP-rings. The wavelengths of the EL for T1 and T2 appear no red-shift from that of BTP, suggesting that phenylene and biphenylene effectively reduce the intermolecular □□□ stacking and do not increase the conjugation length of the biaryls in the devices. The effect of the inserted phenylene-moiety on the enhancement of film amorphism and the luminescence efficiency for small molecules is verified.
1. Round, H. J. Elec. World 1907, 19, 309.
2. Pope, P.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2024.
3. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915.
4. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539-541.
5. Atkins, P. W., Atkins' Physical Chemistry. Oxford University Press: Oxford, 1998.
6. 改繪自Prof. Forrest workshop notes at IDMC 2003, Taipei, Taiwan.
7. 陳金鑫; 黃孝文, OLED:有機電激發光材料與元件. 五南圖書: 台北, 2005.
8. Seguy, I.; Destruel, P.; Bock, H. Synth. Met. 2000, 111, 15.
9. Mi, B. X.; Gao, Z. Q.; Lee, C. S.; Kwong, H. L.; Wang, N. B.; Lee, S. T. J. Mater. Chem. 2001, 11, 2244.
10. Seguy, I.; Jolinat, P.; Destruel, P.; Farenc, J.; Mamy, R.; Bock, H.; Ip, J.; Nguyen, T. P. J. Appl. Phys. 2001, 89, 5442.
11. Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891-4945.
12. Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684.
13. van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson, M.; Mullen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. Adv. Mater. 2003, 15, 495.
14. Ackermann, J.; Videlot, C.; Kassmi, A. E. Thin Solid Films 2002, 403-404, 157-161.
15. Li, J.; Osasa, T.; Hirayama, Y.; Sano, T.; Wakisaka, K.; Matsumura, M. Sol. Energy Mater. Sol. Cells 2007, 91, 745-750.
16. Adams, D. M.; Kerimo, J.; Olson, E. J. C.; Zaban, A.; Gregg, B. A.; Barbara, P. F. J. Am. Chem. Soc. 1997, 119, 10608-10619.
17. Hiromitsu, I.; Murakami, Y.; Ito, T. J. Appl. Phys. 2003, 94, 2434-2439.
18. Cremer, J.; B□uerle, P. Eur. J. Org. Chem. 2005, 3715-3723.
19. Aroca, R.; Ca□o, T. D.; de Saja, J. A. Chem. Mater. 2003, 15, 38-45.
20. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185.
21. Cuppen, H. M.; Graswincke, W. S.; Meekes, H. Cryst. Growth Des. 2004, 4, 1351-1357.
22. Han, E. M.; Do, L. M.; Niidome, Y.; Fujihira, M. Chem. Lett. 1994, 969-972.
23. Joswick, M. D.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P. J. Appl. Phys. 1996, 80, 2883-2890.
24. Strohriegl, P.; Grazulevicius, J. V. Adv. Mater. 2002, 14, 1439-1452.
25. Wang, S. J.; Oldham, W. J.; Hudack, R. A.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 5695-5709.
26. Zhou, C.-Z.; Liu, T.; Lin, T.-T.; Zhan, X.-H.; Chen, Z.-K. Polymer 2005, 46, 10952.
27. Shirota, Y. J. Mater. Chem. 2005, 15, 75-93.
28. Shirota, Y. J. Mater. Chem. 2000, 10, 1-25.
29. Chen, J. P.; Tanabe, H.; Li, X. C.; Thoms, T.; Okamura, Y.; Ueno, K. Synth. Met. 2003, 132, 173-176.
30. Blochwitz, J.; Pfeiffer, M.; Hofmann, M.; Leo, K. Synth. Met. 2002, 127, 169-173.
31. Hancock, J. M.; Gifford, A. P.; Tonzola, C. J.; Jenekhe, S. A. J. Phys. Chem. C 2007, 111, 6875-6882.
32. Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C. H.; Tao, Y.-T. J. Mater. Chem. 2005, 15, 4453-4459.
33. Hancock, J. M.; Gifford, A. P.; Zhu, Y.; Lou, Y.; Jenekhe, S. A. Chem. Mater. 2006, 18, 4924-4932.
34. Kulkarni, A. P.; Gifford, A. P.; Tonzola, C. J.; Jenekhe, S. A. Appl. Phys. Lett. 2005, 86, 061106.
35. Tonzola, C. J.; Kulkarni, A. P.; Gifford, A. P.; Kaminsky, W.; Jenekhe, S. A. Adv. Funct. Mater. 2007, 17, 863-874.
36. Yeh, H. C.; Lee, R. H.; Chan, L. H.; Lin, T. Y. J.; Chen, C. T.; Balasubramaniam, E.; Tao, Y. T. Chem. Mater. 2001, 13, 2788-2796.
37. Robinson, M. R.; Wang, S. J.; Bazan, G. C.; Cao, Y. Adv. Mater. 2000, 12, 1701-1704.
38. Tao, S. L.; Peng, Z. K.; Zhang, X. H.; Wang, P. F.; Lee, C. S.; Lee, S. T. Adv. Funct. Mater. 2005, 15, 1716-1721.
39. Salbeck, J.; Yu, N.; Bauer, J.; Weissortel, F.; Bestgen, H. Synth. Met. 1997, 91, 209-215.
40. Johansson, N.; dosSantos, D. A.; Guo, S.; Cornil, J.; Fahlman, M.; Salbeck, J.; Schenk, H.; Arwin, H.; Bredas, J. L.; Salanek, W. R. J. Chem. Phys. 1997, 107, 2542-2549.
41. Wu, C. C.; Lin, Y. T.; Chiang, H. H.; Cho, T. Y.; Chen, C. W.; Wong, K. T.; Liao, Y. L.; Lee, G. H.; Peng, S. M. Appl. Phys. Lett. 2002, 81, 577-579.
42. Steuber, F.; Staudigel, J.; Stossel, M.; Simmerer, J.; Winnacker, A.; Spreitzer, H.; Weissortel, F.; Salbeck, J. Adv. Mater. 2000, 12, 130-133.
43. Ostrowski, J. C.; Hudack, R. A.; Robinson, M. R.; Wang, S. J.; Bazan, G. C. Chem.--Eur. J. 2001, 7, 4500-4511.
44. He, Q. G.; Lin, H. Z.; Weng, Y. F.; Zhang, B.; Wang, Z. M.; Lei, G. T.; Wang, L. D.; Qiu, Y.; Bai, F. L. Adv. Funct. Mater. 2006, 16, 1343-1348.
45. Benmansour, H.; Shioya, T.; Sato, Y.; Bazan, G. C. Adv. Funct. Mater. 2003, 13, 883-886.
46. Nagai, M.; Nozoye, H. J. Electrochem. Soc. 2007, 154, J239-J245.
47. Okumoto, K.; Shirota, Y., In 81st Annual Spring Meeting of the Chemical Society of Japan, 2002.
48. Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714-9715.
49. Moorthy, J. N.; Natarajan, P.; Venkatakrishnan, P.; Huang, D.-F.; Chow, T. J. Org. Lett. 2007, 9, 5215-5218.
50. Sato, N.; Seki, K.; Inokuchi, H.; Harada, Y. Chem. Phys. 1986, 109, 157-162.
51. Surin, M.; Hennebicq, E.; Ego, C.; Marsitzky, D.; Grimsdale, A. C.; M□llen, K.; Br□das, J.-L.; Lazzaroni, R.; Lecl□re, P. Chem. Mater. 2004, 16, 994-1001.
52. Hosokawa, C.; Tokailin, H.; Higashi, H.; Kusumoto, T. Appl. Phys. Lett. 1993, 63, 1322-1324.
53. Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853-3855.
54. Hosokawa, C.; Tokailin, H.; Higashi, H.; Kusumoto, T. J. Appl. Phys. 1995, 78, 5831-5833.
55. Liu, S.; He, F.; Wang, H.; Xu, H.; Wang, C.; Li, F.; Ma, Y. J. Mater. Chem. 2008, 18, 4802-4807.
56. Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57-61.
57. Binning, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930-933.
58. Shih, H.-T.; Lin, C.-H.; Shih, H.-H.; Cheng, C.-H. Adv. Mater. 2002, 14, 1409-1412.
59. 林長生, 含聯三伸苯及蒎之有機物合成暨在有機電激發光元件上之應用. 國立清華大學化學系博士論文: 民國96年.
60. Woon, K. L.; Aldred, M. P.; Vlachos, P.; Mehl, G. H.; Stirner, T.; Kelly, S. M.; O'Neill, M. Chem. Mater. 2006, 18, 2311-2317.
61. Culligan, S. W.; Chen, A. C.-A.; Wallace, J. U.; Klubek, K. P.; Tang, C. W.; Chen, S. H. Adv. Funct. Mater. 2006, 16, 1481-1487.
62. Klenkler, R. A.; Aziz, H.; Tran, A.; Popovic, Z. D.; Xu, G. Org. Elect. 2008, 9, 285-290.
63. DIAMOND 2.0B; Crystal Impact GbR: 1998.
64. Yang, A.; Kuroda, M.; Shiraishi, Y.; Kobayashi, T. J. Chem. Phys. 1998, 109, 8442-8450.
65. Antolini, L.; Tedesco, E.; Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Casarini, D.; Gigli, G.; Cingolani, R. J. Am. Chem. Soc. 2000, 122, 9006-9013.
66. Tirapattur, S.; Belletete, M.; Drolet, N.; Leclerc, M.; Durocher, G. Macromolecules 2002, 35, 8889-8895.
67. Pavia, D. L.; Lampman, G. M.; Kriz, G. S., Ultraviolet spectroscopy. In Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, Thomson Learning: Stamford, 2001; pp 353-386.
68. Chen, H. Y.; Lam, W. Y.; Luo, J. D.; Ho, Y. L.; Tang, B. Z.; Zhu, D. B.; Wong, M.; Kwok, H. S. Appl. Phys. Lett. 2002, 81, 574-576.
69. Geffroy, B.; le Roy, P.; Prat, C. Polym. Int. 2006, 55, 572-582.
70. Yu, J.-Y.; Chen, I-W. P.; Chen, C.-h.; Lee, S.-J.; Chen, I-C.; Lin, C.-S.; Cheng, C.-H. J. Phys. Chem. C 2008, 112, 3097-3102.