簡易檢索 / 詳目顯示

研究生: 方奕斌
Yi-Pin Fang
論文名稱: 以矽基材的單電子泵產生量化電流
Quantized Current with a Silicon-based Single Electron Pump
指導教授: 周亞謙
Ya-Chang Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 114
中文關鍵詞: 單電子電晶體單電子泵 (幫浦)庫倫阻斷庫倫震盪單電子穿遂SOI晶片單電子元件
外文關鍵詞: single electron transistor, single electron pump, single electron turnstile, bidirectional pump, Coulomb blockade, Coulomb oscillation, Silicon, SOI wafer, Dual-gate structure, single electron tunneling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這十年來,單電子元件一直被多人所研究與蓬勃發展。而由於有著傳輸一顆一顆電子的行為,所以單電子元件中的單電子電晶體(SET)與單電子泵(幫浦)在度量衡領域下也受到相當大的矚目。在我們的實驗室中發展了一種新的矽基材單電子泵,此元件的組成為兩個SET以及夾在兩個SET中間一個島(Island)。這個新的單電子泵有兩個值得注意的特色,第一個就是在幫浦運作下,電子會被一顆一顆的傳送。幫浦運作的方法為:將兩個同振幅同頻率但相位相差90度的AC訊號加到兩個SET的DC閘極電壓上(Gate voltage)。此時的汲極-源極電壓(Drain-source voltage)為0,操作溫度為10K。此舉是要用這兩個相位相差90度的正弦波來控制三個島的位能變化(這三個島包含兩個SET的島與夾在兩個SET之間的島)。電子會因為三個島持續位能變化的關係經由穿隧作用來傳送。所產生的電流IP與正弦波的頻率f有著下列關係:IP = ef。所謂的量化電流就是由於電子被一顆一顆傳輸所產生的,且每次傳輸的電子數目亦可以由AC訊號的振幅來決定。第二個特色是幫浦電流的極性可以做變換。經由選擇不同組合的兩個SET的DC閘極電壓或是改變兩個AC訊號的相位,電流流動的方向也會因此改變。所以,我們發展了一個新的矽基材的單電子泵其可以單顆的傳輸電子也可以不需要改變汲極-源極電壓就可以切換就可以切換電流的極性。這個新元件透過SET-island-SET的能量變化圖可以解釋一切的傳輸行為。


    Single electron devices have been researched and developed in nano-electronics for the past ten years. Due to the behavior of transferring electrons one by one, the single electron transistor (SET) and the single electron pump were also gazed at in metrology. A new silicon-based single electron pump with SET-island-SET configuration was developed in our laboratory. Two feature of this pump should be noted. The first one is that electrons are transferred one by one during pump operation. For pump operation, two AC signals of 90∘phase difference with the same amplitude and frequency are added to the DC gate voltages of the two SETs. Drain-source voltage is set at 0 V, and the operation temperature is 10 K. The potential energies of the three islands (including two islands of the SETs and the central island) are varied by the two sine waves of 90∘phase difference. Electrons can be transferred through the device due to the variation of potential energies in the islands. Produced pump current IP is dependent on the frequency f of the sine waves: IP = ef. The quantized current is formed as electrons are transferred one by one. The number of transferred electrons per cycle is controlled by increasing the amplitude of the AC signals. The second feature of this device is the polarity of the pump current can be switched. Choosing different DC gate voltages of the two SETs or changing phase difference between two AC signals, the direction of the pump current is changed. Therefore, a new sort of Si-based single electron pump, which has both abilities for transporting electrons one by one and switching polarity of the pump current without varying drain-source voltage, was fabricated and developed. The behavior of this new device is well explained by the energy diagram of SET-island-SET configuration.

    Chapter 1 Introduction 1 1.1 Single Electron Transistor…………………………1 1.2 Current Standard in Metrology………………………………………………3 1.3 Electron Pump……………………………………………………………………..4 Chapter 2 Theory and Application of Single Electron Tunneling 11 2.1 Energy Variation in Single Electron Tunnel Events…………………………… 11 2.2 The Single Electron Transistor…………………………………………………...14 2.3 Operation Principle for the Al-based Single Electron Pump……………………19 2.4 Operation Principle for the Al-based Single Electron Turnstile………………22 2.5 Operation Principle for the Si-based Bidirectional Pump………………………24 2.6 Operation Principle for NTT’s Si-based Single Electron Pump…………………27 Chapter 3 Experimental Method and Procedure 29 3.1 Introduction…………………………………………………………………29 3.2 Method…………………………………………………………………………...29 3.2.1 Electron-beam Lithography………………………………………………….29 3.2.2 Proximity Effect……………………………………………………………..33 3.2.3 A Method for Fabricating Single Electron Devices………………………….33 3.3 Experimental Procedures…………………………………………………………37 3.3.1 Step 0: Wafer Preparation and Zero Mark Definition……………………….37 3.3.2 Step 1: Si Channel Definition………………………………………………..41 3.3.3 Step 2: Lower Gate Definition………………………………………………43 3.3.4 Step 3: Top Gate Definition………………………………………………….47 3.3.5 Step 4: Contact Hole Formation……………………………………………..48 3.3.6 Step 5: Metal Pad Formation………………………………………………...50 3.4 Establishment of the Measuring System…………………………………………52 3.4.1 Lower Temperature Measuring Facilities……………………………………52 3.4.2 Circuit for Pump Operation………………………………………………….56 Chapter 4 Result and Discussion 58 4.1 Introduction………………………………………………………………………58 4.2 Characteristics of the Single Electron Transistor………………………………...60 4.2.1 The Behavior of a Heavily-doped Si-based SET……………………………60 4.2.2 Discussion for the Behavior of the Si-based SET…………………………...63 4.3 Characteristics of the Dual-gate Si-based Structure……………………………65 4.3.1 The Dual-gate Si-based Structure with Coupled SETs……………………65 4.3.2 The Dual-gate Si-based Structure with Decoupled SETs………………….70 4.4 Pump Operation for the Dual-gate Si-based Structure with Decoupled SETs…76 4.4.1 Two Sine Waves of 0∘Phase Difference……………………………………76 4.4.2 Two Sine Waves of 90∘Phase Difference…………………………………..85 Chapter 5 Conclusion 101 Reference 103 Appendix A Dry Etching Process 106 A.1 Silicon (Poly-silicon) Etching………………………………………………….106 A.2 SiO2 Etching and Si3N4 Etching………………………………………………..106 Appendix B Wafer Cleaning and Wet Etching Process 108 B.1 Wafer Cleaning Process………………………………………………………...108 B.1.1 Resist Removal…………………………………………………………….108 B.1.2 Contaminant Removal……………………………………………………108 B.2 Wet Etching…………………………………………………………………109 Appendix C Run Card for the Fabrication Process 111

    1. Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (New York: Plenum) (1992).
    2. M. W. Keller, J. M. Martinis, N. M. Zimmerman, and A. H. Steinbach, Appl. Phys. Lett. 69, 1804 (1996).
    3. Y. Ono and Takahashi, Appl. Phys. Lett. 82, 1221 (2003).
    4. J. R. Tucker, J. of Appl. Phys. 72, 4399 (1992).
    5. K. Nakazato, R. J. Blaikie, and H. Ahmed, J. Appl. Phys. 75, 5123 (1994).
    6. A. Tujiwara, and Y. Takahashi, Nature 410, 560 (2001).
    7. M. W. Keller, A. L. Eichenberger, J. M. Martinis, and N. M. Zimmerman, Science 285, 1706 (1999).
    8. K. K. Likharev, Proceedings of IEEE 87, 606 (1999).
    9. T. A. Fulton, and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).
    10. J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, Henry I. Simith, and D. A. Andoniadis, Phys. Rev. Lett. 65, 583 (1989).
    11. John Lambe and R. C. Jaklevic, Phys. Rev. Lett. 25, 1371 (1969).
    12. R. E. Cavicchi and R. H. Silsbee, Phys. Rev. Lett. 52, 1453 (1984).
    13. Neil M. Zimmerman and Mark W. Keller, Meas. Sci. Technol. 14, 1237 (2003).
    14. S. V. Lotkhov, S. A. Bogoslovsky, A. B. Zorin, and J. Niemeyer, Appl. Phys. Lett. 78, 946 (2001).
    15. JinHee Kim, Sangchul Oh, Ju-Jin Kim, Jeong-O Lee, Jong Wan Park, Kyung-Hwa Yoo, Hyuk Chan Kwon, Phys. B 284, 1794 (2000).
    16. U. Meirav, M. A. Kastner, and S. J. Wind, Phys. Rev. Lett. 65, 1592 (1990).
    17. A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 69, 1592 (1992).
    18. T. Heinzel, A. T. Johnson, D. A. Wharam, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 23, 16638 (1995).
    19. R. A. Smith and H. Ahmed, J. Appl. Phys. 81, 2699 (1996).
    20. B. T. Lee, J. W. Park, K. S. Park, C. H. Lee, S. W. Paik, S. D. Lee, Jung B. Xhoi, K. S. Min, J. S. Park, S. Y. Hahn, T. J. Park, H. Shin, S. C. Hong, Kwyro Lee, H. C. Kwon, S. I. Park, K. T. Kim, and K-H Yoo, Semicond. Sci. Technol. 13, 1463 (1998).
    21. Y. Takahashi, H. Namatsu, K. Kurihara, and K. Murase, IEEE Trans. Electron Devices 86, 605 (1996)
    22. S. Horiguch, M. Nagase, K. Shirashi, H. Kageshima, Y. Takahashi, and K. Murase, J. J. Appl. Phys. 40, L29 (2001).
    23. H. Ishikuro and T. Hiramoto, Appl. Phys. Lett. 71, 3691 (1997).
    24. R. Augke, W. Eberhardt, C single, F. E. Prins, D. A. Wharam, and D. P. Kern, Appl. Phys. Lett. 76, 2065 (2000).
    25. E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, Appl. Phys. Lett. 67, 938 (1995).
    26. Y. Takahashi, A. Tujiwara, M. Nagase, H. Namatsu, K. Kurihara, K. Iwadate, and K. Murase, Int. J. Electronics 86, 605 (1999).
    27. A. Tilke, R. H. Blick, H. Lorenz, J. P. Kotthaus, and D. A. Wharam, Appl. Phys. Lett. 75, 3704 (1999).
    28. K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).
    29. L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, and J. E. Mooij, Phys. Rev. Lett. 64, 2691 (1990).
    30. L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, and C. J. P. M. Harmans, Phys. Rev. Lett. 67, 1626 (1991).
    31. Y. Nagamune, H. Sakaki, L. P. Kouwenhoven, L. C. Mur, C. J. P. M. Harmans, J. Motohisa, and H. Noge, Appl. Phys. Lett. 64, 2379 (1994).
    32. Y. Ono, N. M. Zimmerman, K. Yamazaki, and Y. Takahashi, J. J. Appl. Phys. 42, L1109 (2003).
    33. H. Pothier, P. Lafarge, P. F. Orfila, C. Urbina, D. Esteve, and M. H. Devert, Phys. B 169, 573 (1991).
    34. S. V. Lotkhov, S. A. Bogoslovsky, A. B. Zorin, and J. Niemeyer, Appl. Phys. Lett. 78, 946 (2001).
    35. J. M. Martinis, M. Nahum, and H. D. Jensen, Phys. Rev. Lett. 72, 904 (1994).
    36. R. H. Blick, R. J. Haug, J. Weis, D. Pfannkuche, K. v. Klitzing, and K. Eberl, Phys. Rev. B 53, 7899 (1996).
    37. F. Hofmann, T. Heinzel, D. A. Wharam, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 51, 13872 (1995).
    38. C. single, R. Augke, F. E. Prins, D. A. Wharam, and D. P. Kern, Semicond. Sci. Technol. 14, 1165 (1999).
    39. K. Tsukagoshi, K. Nakazato, H. Ahmed, and K. Gamo, Phys. Rev. B 56, 3972 (1997).
    40. M. B. A. Jalil, H. Ahmed, M. Wagner, J. Appl. Phys. 84, 4617 (1998).
    41. T. Altebaeumer, S. Amakawa, and H. Ahmed, Appl. Phys. Lett. 79, 533 (2001).
    42. T. Altebaeumer and H. Ahmed, J. Appl. Phys. 90, 1350 (2001).
    43. T. Altebaeumer and H. Ahmed, J. J. Appl. Phys. 40, 80 (2001).
    44. T. Altebaeumer, S. Amakawa, and H. Ahmed, J. Appl. Phys. 94, 3194 (2003).
    45. K. Tsukagoshi and K. Nakazato, Appl. Phys. Lett. 72, 1084 (1998).
    46. Transport in Nanostructures, Edited by D. K. Ferry and S. M. Goodnick (Cambridge: Cambridge University) (1997).
    47. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).
    48. F. Wu and T. H. Wang, Acta Phys. Sin. 52, 696 (2003).
    49. Physics of Nanostructures, edited by J. H. Davies and A. R. Long (London: IOP Publishing) (1992).
    50. Y. Takahashi, A. Fujiwara, K. Yamazaki, H. Namatsu, K. Kurihara, and K. Murase
    51. Silicon Processing for the VLSI Era 1, 2nd Edit., edited by S. Wolf and R. N. Tauber (California: Lattice) (2000).
    52. Proxy Correction with ELPHY, Raith.
    53. S. F. Hu, G. J. Hwang, Y. P. Fang, Z. Y. Pan, and Y. C. Chou, Chin. J. Appl. Phys. 42, 636 (2004).
    54. VLSI Technology, 2nd Edit., edited by S. M. Sze (New York: McGraw-Hill) (1988).
    55. VLSI 製造技術,莊達人編著 (台北:高立) (2002).
    56. Reference Manual of 4200-SCS Semiconductor Characterization System, Keithley.
    57. Semiconductor Physics & Devices, 3rd Edit., edited by D. A. Neamen (New York: McGraw-Hill) (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE