研究生: |
林效賢 Hsiao-Hsien Lin |
---|---|
論文名稱: |
選區成長氧化鋅奈米線及其發光特性研究 Selective Growth and Luminescent Properties of Zinc Oxide Nanowires |
指導教授: |
林鶴南博士
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 選區成長 、雷射效應 、藍光現象 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們藉由原子力顯微術的奈米機械力微影技術,在氧化鋁基板上刻畫出各式圖樣,隨著鍍上金再進行去阻劑製程,可得到各式金之奈米結構。把刻畫出的金屬圖樣當成催化劑,利用一維奈米線的氣-液-固成長機制,進行選區成長氧化鋅奈米線。利用不同雷射光源激發獲得光致激發光譜觀察到其在藍光波段(470 nm)及紫外光波段(377 nm)有發光效應,且有雷射效應產生。最後在光學顯微鏡的暗視野功能下,觀察其發光情形,發現奈米線具有藍色的螢光,而且對於氧化鋅奈米線,我們在光學顯微鏡的光譜及脈衝雷射的光譜中同樣都有發現410 nm的峰值。
AFM nanomachining was performed on a thin resist pre-coated on a sapphire substrate, and then metal was coated. After metal-coating and lift-off, nanostructures were created successfully. Specifically, various gold nanopatterns could be created by this stable process. The selective growth of zinc oxide nanowires was realized with the use of the created catalytic gold nanopatterns by a VLS (vapor-liquid-solid) growth mechanism. Various laser sources were used as the exciting optical sources to measure the photoluminescence of the nanowires. The obvious two peaks in UV and blue zone (377 nm, 470 nm) of zinc oxide nanowires PL, and the lasing phenomenon has been observed. Finally, we observe zinc oxide nanowires OM dark field image, the blue fluorescence has been observed. For zinc oxide nanowires, we can find peak at 410 nm in both OM and pulse laser photoluminescence spectra.
第六章 參考文獻
[1] K. Hiruma et al., J. Appl. Phys.,77 (2), 447 (1995)
[2] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
[3] J. Hu et al., Acc. Chem. Res., 32, 435 (1999)
[4] Z. L. Wang, MaterialsToday June (2004)
[5] P. Yang et al., Adv. Funct. Mater. 12, 323 (2002).
[6] M. T. Browne, P. Charalambous and V. A. Kudryashov, Microelectron Eng. 13, 221(1999)
[7] T.W. Odom et al., Talanta 67, 507 (2005).
[8] 林鶴南、李龍正、劉克迅,科儀新知 第十七卷三期,12 (1995).
[9] H. N. Lin, S. H. Chen, S. T. Ho, P. R. Chen, and I. N. Lin, J. Vac. Sci.Technol. B 21, 916 (2003).
[10] S. T. Ho, Y. H. Chang, and H. N. Lin, J. Appl. Phys. 96, 3562 (2004).
[11] H. N. Lin, Y. H. Chiou, B. M. Chen, H.-P. D. Shieh, and C. R. Chang, J. Appl. Phys. 83, 4997 (1998).
[12] R. Buzio, C. Boragno, and U. Valbusa, Wear 254, 981 (2003).
[13] Z. Wei, C. Wang, and C. Bai, Langmuir 17, 3945 (2001).
[14] Y. Y. Wei, and G. Eres, Nanotechnology 11, 61 (2000)
[15] M. A. McCord and R. F. W. Pease, J. Vac. Sci. Technol. B 6, 293 (1988)
[16] Q. Li, J. Zheng, and Z. Liu, Langmuir 19, 166 (2003).
[17] J.-H. Hsu, H.-W. Lai, H.-N. Lin, C.-C. Chuang, and J.-H. Huang, J. Vac. Sci. Technol. B 21, 2599 (2003).
[18] R. Magno and B. R. Bennett, Appl. Phys. Lett. 70, 1855 (1997).
[19] L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995)
[20] E. Dubois and J.-L. Bubbendorff, Solid-State Electron. 43, 1085 (1999).
[21] H. Kuramochi, F. P. Murano, J. A. Dagata and H. Yokoyama, Nanotechnology 15, 297(2004)
[22] L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67,1552(1995)
[23] J. L. Elechiguerra, J. A. Manriquez and M. J. Yacaman, Appl. Phys. A 79, 461 (2004)
[24] J. H. Hsu, C. Y. Lin, and H. N. Lin, J. Vac. Sci. Technol. B 22, 2768 (2004).
[25] M. T. Browne, P. Charalambous and V. A. Kudryashov, Microelectron Eng. 13, 221(1999)
[26] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, J. Cryst. Growth 184/185, 601 (1998).
[27] H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seeling, X. Liu, and R. P. H. Chang, Phys. Rev. Lett. 84, 5584 (2000).
[28] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao,S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[29] J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally,J. Phys. Chem. B, 107, 8816 (2003)
[30] P. X. Gao, Z. L. Wang et al. , Science 309,1700 (2005)
[31] W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004)
[32] W. D. Yu, X. M. Li, Appl. Phys. A 79,453-456 (2004)
[33] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, Appl. Phys. Lett. 79, 7983 (1996).
[34] W. I. Park, D. H. Kim, S. W. Jung, Appl. Phys. Lett. 80, 4232 (2002)
[35] M. H. Huang, Peidong Yang et al., Science 292, 1897 (2001)
[36] Z. Zhu, T. L. Chen et al., Chem. Mater. 17, 4227 (2005)
[37] Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003).
[38] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[39] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, Appl. Phys. Lett. 79, 7983 (1996)