簡易檢索 / 詳目顯示

研究生: 陳昱愷
Chen, Yu-Kai
論文名稱: Sn-Co-Cu-Ni相平衡與Sn-Co-(Cu)/Ni之界面反應
Sn-Co-Cu-Ni phase equilibria and Sn-Co-(Cu)/Ni interfacial reactions
指導教授: 陳信文
Chen, Sinn-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 238
中文關鍵詞: 界面反應相平衡無鉛銲料擴散
外文關鍵詞: interfacial reaction, phase equilibria, lead-free solder, diffusion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   軟銲是電子產品中最主要的連接技術。近年因無鉛銲料、覆晶、Through Silicon Via等技術的發展,軟銲的重要性更是與日俱增。當今無鉛銲料的使用與開發,除了非常普遍的Sn-Ag-Cu合金外, Sn-Co-Cu銲料亦開始受到重視。電子產品的可靠度與銲點性質息息相關,而界面所生成的介金屬相是影響銲點可靠度最主要的因素。Ni是常使用的阻障層材料,Sn-Co-Cu/Ni界面反應的知識對Sn-Co-Cu銲料的發展非常重要。本研究探討了Sn-Co-Cu-Ni系統的相平衡與Sn-Co-(Cu)/Ni的界面反應。Sn-Co-Cu-Ni的相平衡資訊除了有助於了解與分析Sn-Co-(Cu)/Ni界面反應的結果外,也是重要的基礎材料知識。本研究先以實驗方法補正文獻中不足與錯漏的富Sn區之Sn-Co二元系統與Sn-Co-Cu三元系統的相平衡資料,並修正了文獻中Sn-Co-Ni三元系統的等溫橫截面圖,以推知Sn-Co-Cu-Ni四元的等溫相圖。再以反應偶的實驗方法,探討Sn-Co-(Cu)/Ni的界面反應,依據反應偶的結果,以及四元相平衡的資料,進一步分析與瞭解界面反應的機制。
      實驗結果顯示,Sn-Co二元系統250oC液相邊界應介於Sn-0.02~ 0.06wt.%Co,且共晶組成與溫度分別為Sn-0.02wt.%Co與231.85oC。微量Co的添加可有效降低純Sn的過冷現象,當Co濃度大於0.02wt.%時,過冷可小於5oC。Sn-Co-Cu三元系統在250oC的等溫橫截面圖中,α-CoSn3與CoSn2相具有最大的Cu溶解度分別為4.2與1.57at.%,η-Cu6Sn5相具有至少15.5at.%的Co溶解度,且α-Co3Sn2相應具有大於20at.%的Cu溶解度;在800oC時,β-Co3Sn2相具有最大的Cu溶解度約為30at.%,且一個新的三元相Sn24Co16Cu60被發現;在1000oC時,β-Co3Sn2相具有最大的Cu溶解度則約為15at.%。而在Sn-Co-Ni的系統中,文獻所發現的(Ni,Co)Sn4相應為一個介穩相。
      在界面反應的部份,當Co濃度介於0.4~0.01wt.%時,Sn-Co銲料對Ni基材的界面反應具有相同的反應機制,差別僅在於界面反應生成相含量的多寡,銲料中的Co濃度越低,可生成介金屬相的量也越少。由實驗結果可知,Sn-Co/Ni在250oC下的界面反應,反應初期,界面先生成Ni3Sn4與(Ni,Co)Sn4介穩相,隨著Ni基材持續的溶解與Co原子的擴散,反應相持續變化。Sn-Co/Ni系統對Co與Ni濃度的敏感性極高,微量濃度的改變,便足以造成生成相有巨大的轉變,以至於有如此複雜的界面反應現象發生。將微量的Co添加至Sn-Cu銲料中,其效應與添加Ni類似,且改變銲料中的Cu濃度會造成反應路徑的轉變。當銲料中的Cu為0.7wt.%時,在反應初期,其界面反應現象類似於Cu含量較低(0.4或0.5wt.%Cu)的Sn-Cu銲料對Ni基材的界面反應,直到反應末期,在界面處才會生成針狀的CoSn2相;降低銲料中的Cu濃度至0.5wt.%,界面除了Cu6Sn5相與Ni3Sn4相外,會開始有CoSn3介穩相的生成;而當Cu濃度為0.3wt.%時,界面反應現象則類似於Sn-Co/Ni的界面反應,此時界面僅存在Ni3Sn4相與CoSn3介穩相,無法觀察到Cu6Sn5相。


    摘要 I 目錄 III 圖目錄 VII 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 12  2-1 相平衡 12   2-1-1相圖 12   2-1-2 熱力學與相圖 18   2-1-3 相圖計算 21   2-1-4 Sn-Co-Cu-Ni系統相平衡 26    2-1-4.1 Sn-Cu二元相圖 26    2-1-4.2 Sn-Co二元相圖 26    2-1-4.3 Sn-Ni二元相圖 27    2-1-4.4 Co-Cu二元相圖 27    2-1-4.5 Co-Ni二元相圖 27    2-1-4.6 Cu-Ni二元相圖 28    2-1-4.7 Sn-Co-Ni三元相圖 28    2-2-4.8 Sn-Cu-Ni三元相圖 29    2-2-4.9 Sn-Co-Cu三元相圖 29  2-2界面反應 36   2-2-1界面反應與相平衡的關係 36   2-2-2界面反應動力學 40   2-2-3界面反應生成相的型態與其演變 43   2-2-4 Sn-Co-(Cu)/Ni系統界面反應 47    2-2-4.1 Sn-Cu/Ni 47    2-2-4.2 Sn-Co/Ni 49    2-2-4.3 Sn-Co-Cu/Ni 49 第三章 實驗方法 51  3-1Sn-Co-Cu-Ni相平衡 51   3-1-1富錫區Sn-Co系統相平衡之實驗方法 51    3-1-1.1合金配置 51    3-1-1.2熱處理 52    3-1-1.3樣品分析 52   3-1-2 Sn-Co-Cu三元系統在250oC、800oC與1000oC相平衡 53    3-1-2.1合金配置 53    3-1-3.2熱處理 53    3-1-4.3樣品分析 53   3-1-3 Sn-Co-Ni三元系統在250oC相平衡 54  3-2 Sn-Co-(Cu)/Ni界面反應 54   3-2-1 Sn-Co/Ni界面反應 54    3-2-1.1銲料配置與基材前處理 54    3-2-1.2反應偶製備 54    3-2-1.3反應偶分析 55   3-2-2 Sn-Co-Cu/Ni界面反應 55 第四章 結果與討論 58  4-1 Sn-Co-Cu-Ni相平衡. 58   4-1-1富錫區Sn-Co二元系統相平衡 58   4-1-2 Sn-Co-Cu三元系統初步的相圖計算 67    4-1-2.1 Sn-Cu二元系統 67    4-1-2.2 Sn-Co二元系統 68    4-1-2.3 Co-Cu二元系統 69    4-1-2.4 Sn-Co-Cu三元系統初步的相圖計算 69 4-1-3 Sn-Co-Cu三元系統在250oC的等溫橫截相圖 76    4-1-3.1 L+α-CoSn3+η-Cu6Sn5三相區 76    4-1-3.2 α-CoSn3+CoSn2+η-Cu6Sn5三相區 79    4-1-3.3 L+η-Cu6Sn5兩相區 80    4-1-3.4 α-CoSn3+η-Cu6Sn5兩相區 81    4-1-3.5 Cu3Sn+ε-Co+Cu三相區 82    4-1-3.6 α-Co3Sn2+Cu3Sn+ε-Co三相區 83    4-1-3.7 α-Co3Sn2+Cu3Sn兩相區 84    4-1-3.8其他區域 85    4-1-3.9 Sn-Co-Cu三元系統在250oC的等溫橫截相圖 87 4-1-4 Sn-Co-Cu三元系統在800oC的等溫橫截相圖 118    4-1-4.1 L+α-Co+Cu三相區 118    4-1-4.2 L+α-Co+Sn3Co2Cu8三相區 119    4-1-4.3 α-Co+β-Co3Sn2+ Sn3Co2Cu8三相區 120    4-1-4.4 L+β-Co3Sn2+ Sn3Co2Cu8三相區 120    4-1-4.5 L+α-Co兩相區 121    4-1-4.6 L+β-Co3Sn2兩相區 121    4-1-4.7 L+CoSn兩相區 122    4-1-4.8 L+CoSn+β-Co3Sn2三相區 123    4-1-4.9 β-Co3Sn2單相區 124    4-1-4.10 Sn3Co2Cu8單相區 125    4-1-4.11 Sn-Co-Cu三元系統在800oC的等溫橫截相圖 126 4-1-5 Sn-Co-Cu三元系統在1000oC的等溫橫截相圖 148    4-1-5.1 L+α-Co+Cu三相區 148    4-1-5.2 L+α-Co+β-Co3Sn2三相區 149    4-1-5.3 L+α-Co兩相區 150    4-1-5.4 L+β-Co3Sn2兩相區 151    4-1-5.5 α-Co+β-Co3Sn2兩相區 152    4-1-5.6 Sn-Co-Cu三元系統在1000oC的等溫橫截相圖 152 4-1-6 Sn-Co-Ni三元系統在250oC的等溫橫截相圖 167  4-2 Sn-Co-(Cu)/Ni界面反應 175   4-2-1 Sn-0.06wt.%Co/Ni在250oC下的液-固界面反應 175   4-2-2 Sn-Co/Ni在250oC下的液-固界面反應 196 4-2-3 Sn-Co-Cu/Ni在250oC下的液-固界面反應 213 第五章 結論 231 參考文獻 234

    1. J. S. Kilby, US patent 3138743, (1959).
    2. 陳信文、陳立軒、林永森、陳志銘,《電子構裝技術與材料》,高立圖書,p.1,(2004)。
    3. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, (1994).
    4. 李明勳碩士論文,國立中央大學化工所,(1998)。
    5. R. J. Wassink, Soldering in Eelectronics, Electro-chemical Pub. Ltd., p.523, (1989).
    6. R. J. Wassink, Soldering in Eelectronics, Electrochemical Pub. Ltd., p.99, (1984).
    7. A. Rahn, The Basics of Soldering, John Wiely & Sons, New York, (1993).
    8. L. J. Turbini, G. C. Munie, D. Bernier, J. Gamalski and D.W. Bergman, Transactions on Electronics Packaging Manufacturing, 24(1), p.4-9, IEEE, (2001).
    9. R. J. Wassink, Soldering in Eelectronics, Electrochemical Pub. Ltd., p.99, (1984).
    10. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, Chapter 1、3、6、15, (1996).
    11. 張琬君碩士論文,國立中央大學化材所,(2004)。
    12. S. W. Jeong, J. H. Kim and H. M. Lee, Journal of Electronic Materials, 33(12), p.1530, (2004).
    13. M. G. Cho, S. K. Kang, D. Y. Shih and H. M. Lee, Journal of Electronic Materials, 36(11), p.1501, (2007).
    14. I. de Sousa, D. W. Henderson, L. Patry, S. K. Kang and D. Y. Shih, Proc. 56th. , Electronic Components and Technology Conference, p.1454-1462, (2006).
    15. K. S. Kim, S. H. Huh and K. Suganuma, Microelectron. Reliab. 43, p.259, (2002).
    16. H. Nishikawa, A. Komatsu, and T. Takemoto, Journal of Electronic Materials, 36(9), p.1137, (2007).
    17. I.E. Anderson, Journal of Materials Science: Materials in Electronics. 18, p.55, (2007).
    18. P. Sun, C. Andersson, X. Wei, Z. Cheng, D. Shangguan, J. Liu, Materials Science and Engineering B, 135, p.134, (2006).
    19. F. N. Rhines, Phase Diagrams in Metallurgy, McGraw & Hall, New York, (1956).
    20. J. M. Smith, H. C. Van Ness, M. M. Abbott, Introduction to chemical engineering thermodynamics, 6th edition, McGraw-Hill, New York, (2001).
    21. 余永寧,《金屬學原理》,冶金工業出版社,p.97,(2003)。
    22. D. R. Gaskell, Introduction to the thermodynamic of materials, 4th edition, Taylor & Francis, New York, (2003).
    23. N. Saunders, A. P. Miodownik, Calphad, Calculation of Phase Diagrams a Comprehensive Guide, Pergamon Materials Series, R. W Cahn, Editor, Elsevier, Oxford, UK, (1998).
    24. H. L. Lukas, S. G. Fries, B. Sundman, Computational Thermodynamics-The Calphad method, 1st edition, Cambridge University Press, (2007).
    25. PURE 4.4 SGTE Pure Elements (Unary) Database, Scientific Group Thermodata Europe, 1991-2006.
    26. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, 11(3), p.278-287, (1990).
    27. A. Lang, W. Jeitschko, Zeitschrift fur Metallkunde, 87(10), p.759-764. (1996).
    28. K. Ishida and T. Nishizawa, ASM Handbook Vol.1 Alloy Phase Diagrams, ed. By H. Baker, ASM International, Materials Park, Ohio (1992).
    29. P. Nash and A. Nash, ASM Hankbook Vol.3 Alloy Phase Diagrams, ed. By H. Baker, ASM International, Materials Park, Ohio(1992).
    30. T. Nishizawa, K. Ishida, Bulletin of Alloy Phase Diagrams, 5, p.161-165, (1984).
    31. D. J. Chakrabarti, D. E. Laughlin, S. W. Chen and Y. A. Chang, edited by P. Nash, ASM, Materials Park, p.85-95, (1991).
    32. K. Ishida and T. Nishizawa, ASM Handbook Vol.1 Alloy Phase Diagrams, Ed. By H. Baker, ASM International, Materials Park, Ohio, (1992).
    33. Y. H. Chao, S. W. Chen, C. H. Chang, C. C. Chen, Metallurgical and Materials Transactions A, 39(A), p.477-489, (2008).
    34. E. Wachtel and E. Bayer, Zeitschrift fuer Metalllunde, 75(1), p.61-69, (1984).
    35. K. P. Gupta, Indian Institute of Metals, 1, p.195-218, (1990).
    36. B. D. Bastow and D. H. Kirkwood, Journal of the Institute Metals, London, 99, p.277-283, (1971).
    37. W. B. Price, C. G. Grant and A. J. Phillips, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 78, p.503-517, (1928).
    38. M. Miki and Y. Ogin, Transactions of the Japan Institute of Metals, 25(9), p.593-602, (1984).
    39. C. H. Lin and S. W. Chen, and C. H. Wang, Journal of Electronic Materials, 31(9), p.907-915, (2002).
    40. C. H. Wang and S. W. Chen, Metallurgical and Materials Transactions A, 34A(10), p.2281-2287, (2003).
    41. C. L. Tsao and S. W. Chen, T. Materials Science, 30, p.5215-5222, (1995).
    42. S. W. Chen, C. M. Chen and W. C. Liu, Journal of Electronic Materials, 27(11), p.1193-1198, (1998).
    43. F. J. J. Van Loo, Progress in Solid State Chemistry, 20(1), p.47-99, (1990).
    44. F. J. J. van Loo, J. A. van Beek, G. F. Bastin, and R. Metselaar, in Diffusion in Solids: Recent Developments, ed. By M. A. Dayananda and G. E. Murch, The Metallurgical Society, Inc., Warrendale, Pennsylvania, (1985).
    45. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, 2, p.89-117, (1963).
    46. J. B. Clark, Transactions of the Metallurgical Society of AIME, 227, p.1250-1251, (1963).
    47. R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principle, 3rd edition, PWS, Boston, p.365-367, (1994).
    48. C. R. Kao, Materials Science and Engineering A, 238, p.196-201, (1997).
    49. C. H. Wang, S. W. Chen, C. H. Chang, J. C. Wu, Metallurgical and Materials Transactions A, 34, p.199-209, (2003).
    50. U. Gosele, K. N. Tu, Journal of Applied Physics, 53(4), p.3252-3260, (1982).
    51. V. I. Dybkov, Reaction Diffusion and Solid State Chemical Kinectics, The IPMS Publications, kyiv, (2002).
    52. C. H. Wang, S. W. Chen, Intermetallics, 16, p.524-530, (2008).
    53. C. E. Ho, S. C. Yang, C. R. Kao, Journal of Materials Science: Materials in Electronics, 18, p.155-174, (2006).
    54. 李守維碩士論文,國立清華大學化工所,(2003)。
    55. 劉家明碩士論文,國立中央大學化工所,(2000)。
    56. S. W. Chen, C. H. Wang, Journal of Materials Research, 21(9), p.2270-2277, (2006).
    57. 王朝弘碩士論文,國立清華大學化工所,(2002)。
    58. 陳文泰碩士論文,國立中央大學化材所,(2002)。
    59. C. E. Ho, R. Y. Tsai, T. L. Lin, C. R. Kao, Journal of Electronic Materials, 31, p.584-590, (2002).
    60. W. T. Chen, R. Y. Tsai, Y. L. Lin, C. R. Kao, Journal of Surface Mount Technology, 15(4), p.40-44, (2002).
    61. W. T. Chen, C. E. Ho, C. R. Kao, Journal of Materials Research, 17(2), p.263-266, (2002).
    62. C. H. Wang, S. W. Chen, Acta Materialia, 54, p.247-253, (2006).
    63. C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao, Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interface, p.39-44, IEEE, (2005).
    64. C. H. Wang, S. W. Chen, Metallurgical and Materials Transactions A, 34A(10), p.2281-2287, (2003).
    65. P. Sun, C. Andersson, X. Wei, Z. Cheng, D. Shangguan, J. Liu, Materials Science and Engineering B, 33(10), p.134-140, (2006).
    66. L. Zhang, S. Chen, P. Sun, Z. Cheng, J. Liu. Proceedings of HDP, p.1-5, IEEE, (2007).
    67. L. Wang, Q. MEI, Journal of Materials Science & Technology, 22(4), p.569-571, (2006).
    68. L. Liu, C. Andersson, J. Liu, Journal of Electronic Materials, 33(9), p.935-939, (2004).
    69. M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, K. Ishida, Computer Coupling of Phase Diagrams and Thermochemistry, 28, p.213-220, (2004).
    70. J. H. Shim, C. S. Oh, B. J. Lee, D. N. Lee, Zeitschrift Fur Metallkunde, 87(3), p.205-212, (1996).
    71. M. Palumbo, S. Curiotto, L. Battezzati, Computer Coupling of Phase Diagrams and Thermochemistry, 30, p.171-178, (2006).
    72. 王朝弘博士論文,國立清華大學化工所,(2008)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE