研究生: |
林暐勛 Lin, Wei-Hsun |
---|---|
論文名稱: |
利用分子束磊晶系統成長型態Ⅱ銻化鎵/砷化鎵量子環及其在元件上的應用 Type-II GaSb/GaAs Quantum Ring Structures Prepared by Molecular Beam Epitaxy and their Device Applications |
指導教授: |
吳孟奇
林時彥 |
口試委員: |
蘇炎坤
鄭克勇 綦振瀛 許渭州 劉文超 謝光前 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 分子束磊晶 、型態二 、銻化鎵 、量子環 、發光二極體 |
外文關鍵詞: | Molecular Beam Epitaxy, Type-II, GaSb, Quantum Ring, Light Eimitting Diode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是探討型態二砷化銻/砷化鎵量子環的表面形貌、發光特性及相關的元件應用。藉由在執行成長後銻原子浸潤時 (Sb post soaking) 時改變銻與背景砷原子的比例,我們可控制量子點或是量子環的的形成。相較於量子點結構,量子環較強的螢光放光強度是由於擁有較大的電子電洞波函數覆蓋及較多圍繞在量子環的周遭的電子數目。為了要更進一步的強化型態二量子環的螢光強度、我們提出具有較薄的砷化鎵隔離層的耦合量子環概念。當隔離層降低到五奈米時、耦合量子環結構呈現了更強的光激發光強度與較大的峰值能量藍位移,其原因是在於此結構改善了電子的侷限效果進而使得較多的電子累積在薄砷化鎵隔離層中。若再更進一步的降低隔離層的厚度到兩奈米時,樣品的螢光強度甚至超過了單層的型態一砷化銦/砷化鎵量子點樣品。類似於耦合量子環的概念,砷化銦鎵覆蓋的量子環提供了額外的電子侷限來提升螢光的發光強度。利用砷含量含有 15 % 的砷化銦鎵覆蓋層的量子環所做出來的發光二極體,我們製造出可調製波長從 1332 到 1252 奈米的發光二極體,此結果也證實室溫 1.3 微米電激發螢光可以很輕易藉由插入砷化銦鎵層覆蓋的銻化鎵量子環來達到,此結果對於銻化鎵量子環結構的實際應用有很大的幫助。
In this thesis, the surface morphologies and optical characteristics of type-II GaSb quantum ring (QR) structures and its related device applications are investigated. By changing Sb/background As flux ratios during the post-growth Sb soaking procedure, either fully quantum-dot (QD) or QR morphologies can be obtained. The intense luminescence of GaSb QR structures is observed due to the increasing electron-hole wave function overlapping and more surrounding electron shells over the QRs. To further improve the luminescence intensities of the type-II QRs, coupled QRs separated by thin GaAs spacer layers are proposed. With 5 nm GaAs spacer layers, both stronger photoluminescence (PL) intensity and larger PL blue shift are observed, which are attributed to the larger number of electrons accumulated in the thin GaAs spacer layer resulted from improved electron confinement. With further reducing the GaAs spacer layer to 2 nm, the PL intensity of the sample is even more intense than a single-period type-I InAs quantum dots (QDs). Similar with coupled QRs, InGaAs-capped QR structures have provided additional electron confinement to enhance the luminescence intensity. By using In0.15Ga0.85As capped QRs embedded in GaAs PIN diode, a wavelength-tunable light-emitting device from 1332 to 1252 nm is fabricated, which demonstrates room-temperature 1.3 u electroluminescence can be easily achieved by using the type-II InGaAs-capped GaSb QR structure.
[1] F. Hatami, N. N. Ledentsov, M. Grundmann, J. Böhrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev, and Zh. I. Alferov, “Radiative recombination in type-II GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 67, pp. 656-658, May 1995.
[2] B. R. Bennett, R. Magno, and B. V. Shanabrook, “Molecular beam epitaxial growth of InSb, GaSb, and AlSb nanometer‐scale dots on GaAs”, Appl. Phys. Lett., vol. 68, pp. 505-507, November 1995.
[3] E. R. Glaser, B. R. Bennett, B. V. Shanabrook, and R. Magno, “Photoluminescence studies of self‐assembled InSb, GaSb, and AlSb quantum dot heterostructures”, Appl. Phys. Lett., vol. 68, pp. 3614-3616, April 1996.
[4] A Subekti, Melissa J Paterson, E.M Goldys, T.L Tansley, ” The influence of substrate on the self-organised island nucleation and morphology of metalorganic chemical vapour deposited GaSb”, Applied Surface Science, vol. 140, pp. 190-196, February 1999.
[5] Motlan and E. M. Goldys, “Photoluminescence of multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition at atmospheric pressure”, Appl. Phys. Lett., vol. 79, pp. 2976-2978, August 2001.
[6] C.‐K. Sun, G. Wang, J. E. Bowers, B. Brar, H.‐R. Blank, H. Kroemer, and M. H. Pilkuhn, “Optical investigations of the dynamic behavior of GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 68, pp. 1543-1545, January 1996.
[7] N. N. Ledentsov, J. Böhrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Ya. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. Kop’ev, and Zh. I. Alferov, “Radiative states in type-II GaSb/GaAs quantum wells”, Phys. Rev. B, vol. 52, pp. 14058–14066, November 1995.
[8] F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Carrier dynamics in type-II GaSb/GaAs quantum dots”, Phys. Rev. B, vol. 57, pp. 4635–4641, February 1998.
[9] K. Suzuki, R. A. Hogg, and Y. Arakawa, “Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy”, J. Appl. Phys., vol. 85, pp. 8349-8352, Mar. 1999.
[10] K. Suzuki, Richard A. Hogg, K. Tachibana and Y. Arakawa, “Density Control of GaSb/GaAs Self-assembled Quantum Dots (∼25nm) Grown by Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., vol. 37, pp. L203-L205, January 1998.
[11] C. Jiang, H. Sakaki, “Controlling anisotropy of GaSb(As)/GaAs quantum dots by self-assembled molecular beam epitaxy”, Physica E: Low-dimensional Systems and Nanostructures, vol. 32, pp. 17-20, May 2006.
[12] G. Balakrishnan, J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, A. Jallipalli,L. R. Dawson, and D. L. Huffaker, “III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs”, Appl. Phys. Lett., vol. 89, pp. 161104-1-161104-3, October 2006.
[13] S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs”, Appl. Phys. Lett., vol. 88, pp. 131911-1-131911-3, March 2006.
[14] A. Jallipalli, G. Balakrishnan, S.H. Huang, T. Rotter, K. Nunna, B. Liang, L. Dawson, D. Huffaker, “Structural Analysis of Highly Relaxed GaSb Grown on GaAs Substrates with Periodic Interfacial Array of 90° Misfit Dislocations.”, Nanoscale Res Lett., vol. 4, pp. 1458-62, August 2009.
[15] T. Nakai, S. Iwasaki, and K. Yamaguchi, “Control of GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., vol. 43, pp. 2122-2124, April 2004.
[16] R. Timm, A. Lenz, H. Eisele, L. Ivanova, M. Dähne, G. Balakrishnan, D. L. Huffaker, I. Farrer, and D. A. Ritchie, “Quantum ring formation and antimony segregation in GaSb/GaAs nanostructures”, J. Vac. Sci. Technol. B, vol. 26, pp. 1492-1503, August 2008.
[17] R. Timm, H. Eisele, A. Lenz, L. Ivanova, G. Balakrishnan, D. L. Huffaker, and M. Dähne, “Self-Organized Formation of GaSb/GaAs Quantum Rings’, Phys. Rev. Lett., vol. 101, pp. 256101-256104, December 2008.
[18] E. P. Smakman, J. K. Garleff, R. J. Young, M. Hayne, P. Rambabu, and P. M. Koenraad, “GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy”, Appl. Phys. Lett., vol. 100, pp. 142116-1-142116-3, April 2012.
[19] I. Farrer, M.J. Murphy, D.A. Ritchie, A.J. Shields, “Room temperature 1.3 m emission from self-assembled GaSb/GaAs quantum dots”, Journal of Crystal Growth, vol. 251, pp. 771-776, April 2003.
[20] M. Kudo, T. Mishima, S. Iwamoto, T. Nakaoka, Y. Arakawa, "Long-wavelength luminescence from GaSb quantum dots grown on GaAs substrates", Physica E, vol. 21, pp. 275-278, March 2004.
[21] C. C. Tseng, S. C. Mai, W. H. Lin, S. Y. Wu, B. Y. Yu, S. H. Chen, S. Y. Lin, J. J. Shyue, and M. C. Wu, “The Influence of As on the Morphologies and Optical Characteristics of GaSb/GaAs Quantum Dots”, IEEE J. Quantum Electronics, vol. 47, pp. 335-339, March 2011.
[22] S. Y. Lin, C. C. Tseng, W. H. Lin, S. C. Mai, S. Y. Wu, S. H. Chen, and J. I. Chyi, “Room-Temperature Operation Type-II GaSb/GaAs Quantum-Dot Infrared Light-Emitting Diode”, Appl. Phys. Lett., vol. 96, pp. 123503-1-123503-3, Mar. 2010.
[23] K. S. Hsu, T. T. Chiu, W. H. Lin, K. L. Chen, M. H. Shih, S. Y. Lin, and Y. C. Chang, “Compact microdisk cavity laser with type-II GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 98, pp. 051105-1-051105-3, Feb. 2011.
[24] W. H. Lin, C. C. Tseng, K. P. Chao, S. C. Mai, S. Y. Kung, S. Y. Wu, S. Y. Lin, and M. C. Wu, “High-Temperature Operation GaSb/GaAs Quantum-Dot Infrared Photodetectors”, IEEE Photon. Technol. Lett., vol. 23, pp. 106-108, Jan. 2011.
[25] R. J. Young, E. P. Smakman, A. M. Sanchez, P. Hodgson, P. M. Koenraad, and M. Hayne, “Optical observation of single-carrier charging in type-II quantum ring ensembles”, Appl. Phys. Lett., vol. 100, pp. 082104-1-082104-4, February 2012.
[26] K. Shiramine, S. Muto, T. Shibayama, N. Sakaguchi, H. Ichinose, T. Kozaki, S. Sato, Y. Nakata, N. Yokoyama, and M. Taniwaki, “Tip artifact in atomic force microscopy observations of InAs quantum dots grown in Stranski–Krastanow mode”, J. Appl. Phys., vol. 101, pp. 033527-1-033527-5, February 2007.
[27] L. Qza, “Cathodoluminescence and Photoluminescence: Theories and Practical Applications”, 2007, CRC Press.
[28] M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, and D. Bimberg, “450 meV hole localization in GaSb/GaAs quantum dots”, Appl. Phys. Lett., vol. 82, pp. 2706-2708, February 2003.
[29] T. Kawazu and H. Sakaki, “Effects of Sb/As intermixing on optical properties of GaSb type-II quantum dots in GaAs grown by droplet epitaxy”, Appl. Phys. Lett., vol. 97, pp. 261906-1-261906-3, December 2010.
[30] D. Alonso-Álvarez, B. Alén, J. M. García, and J. M. Ripalda, “Optical investigation of type II GaSb/GaAs self-assembled quantum dots”, Appl. Phys. Lett., vol. 91, pp. 263103-1-263103-3, December 2007.
[31] S. Kobayashi, C. Jiang, T. Kawazu and H. Sakaki, “Self-Assembled Growth of GaSb Type II Quantum Ring Structures”, Jpn. J. Appl. Phys., vol. 43, pp. L662-L664, April 2004.
[32] R. Kh. Akchurin, I. A. Boginskaya, N. T. Vagapova, A. A. Marmalyuk, A. A. Panin, ” On the possibility of growth quantum dot arrays in InAs/GaAs system by droplet epitaxy under MOVPE conditions”, Technical Physics Letters, vol. 36, pp.4, Jan2010.
[33] M. A. Kamarudin, M. Hayne, Q. D. Zhuang, O. Kolosov, T. Nuytten, V. V. Moshchalkov and F. Dinelli, “GaSb quantum dot morphology for different growth temperatures and the dissolution effect of the GaAs capping layer”, J. Phys. D: Appl. Phys., vol. 43, pp. 065402-1-065402-5, January 2010.
[34] R. Kaspi and K. R. Evans, “Sb-surface segregation and the control of compositional abruptness at the GaAsSb/GaAs interface,” J. Cryst. Growth, vol. 175-176, pp. 838-843, 1997.
[35] R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, and S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells”, Appl. Phys. Lett., vol. 71, pp. 2409-2411, August 1997.
[36] C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, C. S. Kim, M. Kim, and J. R. Meyer, “High-power continuous-wave midinfrared type-II “W” diode lasers”, Appl. Phys. Lett., vol. 86, pp. 211105-211107, May 2005.
[37] A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, and N. Öncan, “106 years extrapolated hole storage time in GaSb/AlAs quantum dots”, Appl. Phys. Lett., vol. 91, pp. 242109-1-242109-3, December 2007.
[38] G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs”, Phys. Rev. Lett., vol. 76, pp. 952-955, February1996.
[39] W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer”, Appl. Phys. Lett., vol. 93, pp. 033107-1-033107-3, July 2008.
[40] C. Jiang and H. Sakaki “Sb/As Intermixing in Self-assembled GaSb/GaAs Type II Quantum Dot Systems and Control of Their Photoluminescence Spectra”, Physica E, vol. 26, pp. 180-184, February 2005.
[41] J. Tatebayashi, B.L. Liang, R.B. Laghumavarapu, D.A. Bussian, H. Htoon, V. Klimov, G. Balakrishnan, L.R. Dawson, and D.L. Huffaker, “Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well”, Nanotechnology, vol. 19, pp. 295704-1-295704-5, July 2008