簡易檢索 / 詳目顯示

研究生: 陳華選
Chen, Hua-Hsuan
論文名稱: 不規則材料介電係數的量測與模型建立
Model Establishment of Irregular Materials for Complex Permittivities
指導教授: 張存續
Chang, Tsun-Hsu
口試委員: 趙賢文
Chao, Hsein-Wen
李義發
Li, Yi-Fa
王明瑞
Wang, Ming-Rui
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 介電係數不規則材料塑膠介電量測
外文關鍵詞: Complex Permittivitivity, irregular material, plastic, measurement of dielectric constant
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今量測材料的介電係數主要有幾種方法,像是穿透反射法和共振腔微擾法,一般而言,量測介電係數需將材料訂製成量測介電係數專門用的容器盒的形狀再放入容器盒中做量測,對於其他量測介電的方法而言,無法直接量測不規則狀材料(像是絲狀材料、碎塊、粉狀材料),因此本篇論文著手研究量測不規則狀材料介電系數之方法。

    本文分別給出了 LDPE、TPV、PP、HDPE 和 LLDPE 等五種塑料材料的介電常數的測量結果。鐵氟龍容器盒用於放置不規則且不同體積百分比的塑膠材料。將樣品放入中心具有增強電場的共振腔中,這種方法稱為介電常數量測的場強增強法。不同體積百分比的共振頻率和品質因子將通過網絡分析儀進行測量,並與 HFSS(high frequency simulation software)模擬的結果進行比較。此外,提出了幾種HFSS模型來匹配實驗結果,將選擇最合適的模型來預測不規則材料的介電常數和品質因子。通過與實驗結果相關的 HFSS 模擬的參數映射圖預測不同體積百分比的五種塑料材料的介電常數。最後,本文將舉例測量不規則氧化鎂材料的介電常數和品質因子,其與參考文獻的介電常數一致。


    Nowadays, there are several methods for measuring the dielectric constant of materials, such as the transmission reflection method and the perturbation of resonant cavity method. Generally speaking, the measurement of the dielectric coefficient requires the material to be customized to the shape of the holder box. The material in the shape of the holder box is then placed in the holder box for measurement. For other methods of measuring dielectric, it is impossible to directly measure the dielectric constant of irregular materials (such as fibrous materials, fragments, and powdered materials). This paper focuses on the method of measuring the dielectric constant of irregular materials.
    This work presents the measurement results of the complex permittivities of five plastic materials, such as LDPE, TPV, PP, HDPE, and LLDPE respectively. A Teflon holder is employed to pack them with irregular plastic materials with various volumetric percentages. The samples are put into a resonant cavity with enhanced electric field in its center, and this method is called the field-enhancement method for real permittivity measurement. The resonant frequencies and quality factors with different volumetric percentages will be measured by a network analyzer and compared with that of HFSS (High Frequency Structure Simulator) simulation. Moreover, several models of HFSS are proposed to match the experimental result, the most appropriate model will be selected to predict the dielectric constant and quality factor of irregular materials. The complex permittivities of five plastic materials with different volumetric percentages were evaluated by the contour maps of the HFSS simulation related to the experimental results. Finally, this work will give an example to measure the dielectric constant and quality factor of irregular MgO which agrees well with the reference.

    目錄 第一章 緒論 ............................................1 1.1 前言 ........................................1 1.2 微波介紹 ....................................1 1.3 介電係數 ....................................2 1.4 S參數 .....................................3 1.5 量測介電係數方法簡介 ........................4 第二章 微波共振腔設計與介紹 ........................... 5 2.1 共振腔體結構 ................................5 2.2 共振腔體微擾法公式推導 ......................6 2.3 品質因子介紹 ................................9 第三章 實驗方法和步驟 ................................. 11 3.1 量測方法和步驟 ..............................11 3.2 參數映射圖 ..................................13 3.3 分析方法 ....................................14 第四章 各種模型建立 ................................... 16 4.1 圈狀模型 ....................................16 4.2 層狀模型 ....................................18 4.3 複合模型 ....................................21 4.4 電場在各模型的分布 ..........................25 第五章 實驗結果和模型比較 ............................. 28 5.1 實驗和模型數據 .............................28 5.2 不同百分比的參數映射圖建立 ..................35 5.3 介電量測方法優缺點比較 ......................44 5.4 應用實例 ...................................44 第六章 結論 ........................................... 48 附錄 參考文獻 ....................................... 49

    參考文獻
    [1] Jyh Sheen, Z. W. Hong, Weihsing Liu, W. L. Mao, and Chin-An Chen, "Study of dielectric constants of binary composites at microwave frequency by mixture laws derived from three basic particle shapes," European Polymer Journal, vol. 45, pp. 1316-1321, (2009).
    [2] M. Milos, P. Vesna, P. Zoran, P. Aneta, and D. Danijel, "On the measurement methods for dielectric constant determination in Nb/BaTiO3 ceramic," Nov. (2014).
    [3] Chao, Hsien-Wen & Wong, Wei-Syuan & Chang, Tsun-Hsu. (2015). "Characterizing the complex permittivity of high-κ dielectrics using enhanced field method,". Review of Scientific Instruments.
    [4] A. J. Pickles and M. B. Steer, "Effective Permittivity of 3-D Periodic Composites with Regular and Irregular Inclusions," in IEEE Access, vol. 1, pp. 523-536, (2013).
    [5] Hidetoshi Ebara, Takao Inoue, Osamu Hashimoto, "Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band," Science and Technology of Advanced Materials, Volume 7, Issue 1, (2006), Pages 77-83, ISSN 1468-6996.
    [6] Basics of Measuring the Dielectric Properties of Materials. https://www.keysight.com/tw/zh/assets/7018-01284/application-notes/5989-2589.pdf
    [7] Jyh Sheen, " Study of microwave dielectric properties measurements by various resonance techniques ", Measurement, Volume 37, Issue 2, (2005), Pages 123-130, ISSN 0263-2241.
    [8] Mazierska, Janina & Ledenyov, Dimitri & Jacob, Mohan & Krupka, Jerzy. (2005). "Precise microwave characterization of MgO substrates for HTS circuitswith superconducting post dielectric resonator ". Superconductor Science and Technology.
    [9] Jyh Sheen, Z. W. Hong, Weihsing Liu, W. L. Mao, and Chin-An Chen, "Study of dielectric constants of binary composites at microwave frequency by mixture laws derived from three basic particle shapes," European Polymer Journal, vol. 45, pp. 1316-1321, (2009).
    [10] Quinn R. Marksteiner, Michael B. Treiman, Ching-Fong Chen, William B. Haynes, M. T. Reiten, Dale Dalmas, and Elias Pulliam , "Cavity resonator for dielectric measurements of high-ε, low loss materials, demonstrated with barium strontium zirconium titanate ceramics" , Review of Scientific Instruments 88, 064704 (2017).
    [11] 陳威宇,“氧化鎂及氧化鉿作為氧化鋅薄膜電晶體介電層之店特性與穩定研究.”國立成功大學材料科學研究所博士論文.(2013)
    [12] 張凱程,“以圓柱形介質共振腔測鋅奈米微顆粒之介電常數.”國立清華大學光電工程研究所碩士論文.(2008)
    [13] 賴欽詮,“異質參雜二氧化鈦塊材、薄膜及複合電容之研究.”國立東華大學材料科學研究所碩士論文.(2002)
    [14] 許弘竣,“2.45GHz微波加速生質柴油之酯化反應研究.”國立清華大學物理研究所光電組碩士論文.(2020)
    [15] 林容丞,“微波材料處理與材料特性量測.”國立清華大學物理研究所碩士論文.(2012)
    [16] Riddle, Bill & Baker-Jarvis, James & Krupka, Jerzy. (2003). "Complex permittivity measurements of common plastics over variable temperatures". Microwave Theory and Techniques, IEEE Transactions on. 51. 727 - 733. 10.1109.
    [17] Ma, J.; Wu, Z.; Xia, Q.; Wang, S.; Tang, J.; Wang, K.; Guo, L.; Jiang, H.; Zeng, B.; Gong, Y. "Complex Permittivity Measurement of High-Loss Biological Material with Improved Cavity Perturbation Method in the Range of 26.5–40 GHz". Electronics 2020, 9, 1200.
    [18] H. Y. Yao, Y. W. Lin. and T. H. Chang "Dielectric Properties of BaTiO3–Epoxy Nanocomposites in the Microwave Regime". Polymers 2021, 13, 1391.
    [19] Lin Qin, En Li, Yunpeng Zhang, Gaofeng Guo, Liangliang Chen, Minggang Hu, Chengyong Yu, and Canping Li , "A procedure and device for determining complex material permittivity using the free-space resonance method", Review of Scientific Instruments 92, 035104, 2021.
    [20] 可應用於單晶片三維積體電路與超高解析度顯示背板之異質互補式薄膜電晶體元件技術https://www.futuretech.org.tw/futuretech/index.php?action=product_detail&prod_no=P0008700005575
    [21] Dielectric properties: why they’re important and how to measure them https://www.electropages.com/blog/2017/06/dielectric-properties-why-they-are-important/
    [22] Afsar, M. N.; Ding, H.; Tourshan, K. A new 60 GHz open-resonator technique for precision permittivity and loss-tangent measurement. IEEE Trans. Instrum. Meas. 1999, 48, 626-630.
    [23] Mazierska, J.; Ledenyov, D.; Jacob, M. V.; Krupka, J. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator. Semicond. Sci. Technol. 2005, 18, 18-23.
    [24] Ma, L.; Hu, J.; Dou, R. Multiwalled carbon nanotubes filled thermoplastic vulcanizate dielectric elastomer with excellent resilience properties via inhibiting MWCNT network formation. J. Appl. Polym. Sci. 2021, 138, 50129.
    [25] Gogoi, P. J.; Bhattacharyya, S.; Bhattacharyya, N. S. Linear low density polyethylene (LLDPE) as flexible substrate for wrist and arm antennas in C-band. J. Electron. Mater. 2015, 44, 1071–1080.
    [26] Wolter, F.; Fritz Thom, F. A parallel-plate capacitor used to determine the complex permittivity of supercooled aqueous solutions in the 1 MHz range. Meas. Sci. Technol. 1996, 7, 969-975.
    [27] Manu, K. M.; Soni, S.; Murthy, V. R. K.; Sebastian, M. T. Ba (Zn1/3Ta2/3) O3 ceramics reinforced high density polyethylene for microwave applications. J. Mater. Sci. 2013, 24, 2098-2105.
    [28] Hasegawa, Y.; Ohki, Y.; Fukunaga, K.; Mizuno, M.; Sasaki, K. Complex permittivity spectra of various insulating polymers at ultrawide-band frequencies. Electr. Eng. Jpn. 2017, 198, 63-68.

    QR CODE