研究生: |
陳韋霖 Chen, Wei-Lin |
---|---|
論文名稱: |
建築物內宇宙射線牟子與中子的研究 Studies of cosmic-ray muons and neutrons in a concrete building |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
張似瑮
Chang, Szu-Li 林威廷 Lin, Uei-Tyng 蔡惠予 Tsai, Hui-Yu 洪明崎 Horng, Ming-Chi |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 209 |
中文關鍵詞: | 宇宙射線牟子 、宇宙射線中子 、蒙地卡羅模擬 、輻射度量 、混凝土建築 |
外文關鍵詞: | Cosmic-ray muons, Cosmic-ray neutrons, Monte Carlo simulations, Radiation measurements, Concrete building |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地表的宇宙射線劑量以宇宙射線牟子及中子的貢獻為主,因此,過去地表的宇宙射線研究多圍繞著宇宙射線牟子與中子進行探討。然而,卻少有文獻同時探討建築物對宇宙射線牟子與中子的屏蔽效應。基於精進建築物內宇宙射線研究的目的,本研究運用了實驗量測及理論計算方法,同時評估建築物內的宇宙射線牟子與中子的通率/劑量率分佈。本研究採用了柏克萊實驗室宇宙射線偵檢器及高靈敏中子偵檢器,觀測台灣地表及清華大學工科館內宇宙射線牟子與中子隨環境變化的趨勢。利用發展純熟的FLUKA宇宙射線模型,以地球實際尺寸、美國標準大氣模型及理想地磁模型執行蒙地卡羅模擬,獲取台灣地表的宇宙射線牟子與中子資訊。由於宇宙射線模型幾何過於龐大,無法直接用來評估建築物對宇宙射線造成之效應。截至目前為止,亦鮮少有研究在理論計算中,考慮真實的建築物結構。為了突破建築物內宇宙射線理論計算的困窘,本研究提出了二階地表宇宙射線模擬方法。該方法透過完整宇宙射線模擬取得台灣海拔200公尺處的宇宙射線牟子與中子的完整特性,並建立二階地表宇宙射線模型,於海拔200公尺處延續大氣層牟子與中子的發展歷程。透過一系列高空與地表宇宙射線模擬與量測的比較,本研究對理論預測效能進行分析及探討,在利用中子量測結果修正的前提下,於理論預測結果與量測間取得了良好的一致性。
本研究將二階地表宇宙射線模擬方法應用於工科館宇宙射線牟子與中子的研究及建築物屏蔽因數的研究上。於工科館的研究中,本研究展示了工科館內宇宙射線牟子與中子的詳細分布,並決定出宇宙射線牟子和中子於工科館空曠屋頂處的年有效劑量分別為115.2與35.2 μSv a-1,於東側走廊處的劑量率逐層衰減至一樓分別降至97.8與9.9 μSv a-1,每層樓(15公分厚混凝土)對宇宙射線牟子及中子的衰減因數分別決定為0.97與0.78。
建築物屏蔽因數的研究中,本研究探討了兩種常見的建築物型態:20層大樓及5層集合住宅,研究結果充分顯示了側向入射對低樓層的宇宙射線牟子與中子劑量貢獻,有著不可忽略的重要性。本研究決定出宇宙射線牟子與中子的建築物屏蔽因數分別為0.95及0.60。此外,本研究考量宇宙射線劑量組成隨高度變化明顯,以及建築物對不同宇宙射線屏蔽效應的差異,進一步地決定出對整體宇宙射線的建築物屏蔽因數,該因數與海拔高度相依,由海平面的0.79逐漸下降至海拔5000公尺處的0.65。
本研究利用二階地表宇宙射線模擬方法,更合理地估算建築物屏蔽因數,評估結果提供了未來群體劑量評估工作一新參考資訊。此外,本研究所建立的二階地表宇宙射線模擬方法,亦可在未來作為宇宙射線相關應用的研究工具,例如宇宙射線牟子造影、宇宙射線中子水分探測技術等。
Cosmic-ray muons and neutrons dominate cosmic-ray dose at terrestrial altitude. Because of the significant of muons and neutrons, most of the past indoor cosmic ray studies focused on cosmic-ray muons or neutrons. However, those studies rarely investigated both of them simultaneously. Therefore, this study thoroughly determined the flux and dose rate distributions of cosmic-ray muons and neutrons in concrete building by comparing measurements with Monte Carlo simulations of cosmic-ray showers. An angular-energy-dependent surface source comprising secondary muons and neutrons at a height of 200 m above ground level was established and verified, which was used to concatenate the shower development in the upper atmosphere with subsequent simulations of radiation transport down to ground level, including the effect of the terrain and studied building. A Berkeley Lab cosmic-ray detector and a highly sensitive Bonner cylinder were used to perform muon and neutron measurements on each building floor. After careful calibration and correction, the measured responses of the two detectors were discovered to be reasonably consistent with the theoretical predictions, thus confirming the validity of the two-step calculation model employed in this study.
This study shows two practical applications of two-step calculation model. The first application is calculation of cosmic-ray muons and neutron flux/dose distribution in a 5-story concrete building, and the second one is evaluation of building shielding factor. In the first application, three-dimension cosmic-ray muons and neutron flux/dose distributions in the concrete building were obtained. The annual effective doses from cosmic-ray muons and neutrons on the open roof of the building were estimated to be 115.2 and 35.2 Sv, respectively. Muons and neutrons were attenuated floor-by-floor with different attenuation factors of 0.97 and 0.78, and their resultant dose rates on the first floor of the building were 97.8 and 9.9 Sv, respectively.
In the second application, shielding effects of two popular buildings on cosmic-ray muons and neutrons were investigated in Taiwan. The results indicated the importance of considering the lateral particle incidences in indoor cosmic ray studies. The building shielding factors for muons and neutrons were determined to be 0.95 and 0.60, respectively. Because of cosmic-ray dose composition varies with altitude, we proposed altitude-dependent building shielding factor be applied to indoor cosmic-ray dose evaluation. The building shielding factor was determined to be 0.79 at sea-level, then decreased down to 0.65 at altitude of 5000 m.
This study adopted a verified two-step calculation model to evaluate building shielding factor more reasonable. The consequents will be helpful to improve the accuracy of population dose evaluation. Furthermore, the two-step calculation model is a useful tool for cosmic-ray application studies, such as muon radiography and moisture detection by cosmic-ray neutron sensors.
[1] UNSCEAR, "Sources and effects of ionizing radiation," United Nations Publication, 2010.
[2] UNSCEAR, "Sources and effects of ionizing radiation," United Nations Publication, 2000.
[3] C. Patrignani, D. Weinberg, C. Woody, R. Chivukula, O. Buchmueller, Y. V. Kuyanov, E. Blucher, S. Willocq, A. Höcker, and C. Lippmann, "Review of particle physics," Chin. Phys, 2016.
[4] T. O'Halloran, P. Sokolsky, and S. Yoshida, "The highest-energy cosmic rays," Physics Today, vol. 51, pp. 31-37, 1998.
[5] G. D. Badhwar and P. O'Neill, "Galactic cosmic radiation model and its applications," Advances in Space Research, vol. 17, pp. 7-17, 1996.
[6] R. Nymmik, M. Panasyuk, and A. Suslov, "Galactic cosmic ray flux simulation and prediction," Advances in Space Research, vol. 17, pp. 19-30, 1996.
[7] I. G. Usoskin, G. A. Bazilevskaya, and G. A. Kovaltsov, "Solar modulation parameter for cosmic rays since 1936 reconstructed from ground‐based neutron monitors and ionization chambers," Journal of Geophysical Research: Space Physics, vol. 116, 2011.
[8] NASA, "The heliosphere," NASA's Cosmicopia, https://helios.gsfc.nasa.gov/heliosph.html (accessed Mar 18, 2018)
[9] C. Störmer, "The polar aurora," Clarendon Press, 1955.
[10] NASA, "Geomagnetic cutoff rigidity," Space Environment Technologies, http://sol.spacenvironment.net/raps_ops/current_files/Cutoff.html (accessed Mar 18, 2018)
[11] T. Sato, "Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: extension of PARMA/EXPACS," PloS one, vol. 10, 2015.
[12] T. Sato, "Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes," PloS one, vol. 11, 2016.
[13] T. Sanuki, M. Motoki, H. Matsumoto, E. Seo, J. Wang, K. Abe, K. Anraku, Y. Asaoka, M. Fujikawa, and M. Imori, "Precise measurement of cosmic-ray proton and helium spectra with the BESS spectrometer," The Astrophysical Journal, vol. 545, p. 1135, 2000.
[14] M. Motoki, T. Sanuki, S. Orito, K. Abe, K. Anraku, Y. Asaoka, M. Fujikawa, H. Fuke, S. Haino, and M. Imori, "Precise measurements of atmospheric muon fluxes with the BESS spectrometer," Astroparticle Physics, vol. 19, pp. 113-126, 2003.
[15] S. Muraro, "The calculation of atmospheric muon flux using the FLUKA Monte Carlo code," University of Milan, 2007.
[16] W. N. Hess, H. W. Patterson, R. Wallace, and E. L. Chupp, "Cosmic-ray neutron energy spectrum," Physical Review, vol. 116, p. 445, 1959.
[17] P. Goldhagen, "Cosmic-ray neutrons on the ground and in the atmosphere," MRS Bulletin, vol. 28, pp. 131-135, 2003.
[18] J. Clem, G. De Angelis, P. Goldhagen, and J. Wilson, "New calculations of the atmospheric cosmic radiation field—results for neutron spectra," Radiation Protection Dosimetry, vol. 110, pp. 423-428, 2004.
[19] T. Armstrong, K. Chandler, and J. Barish, "Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays," Journal of Geophysical Research, vol. 78, pp. 2715-2726, 1973.
[20] S. Roesler, W. Heinrich, and H. Schraube, "Neutron spectra in the atmosphere from interactions of primary cosmic rays," Advances in Space Research, vol. 21, pp. 1717-1726, 1998.
[21] I. Kurochkin, B. Wiegel, and B. Siebert, "Study of the radiation environment caused by galactic cosmic rays at flight altitudes, at the summit of the Zugspitze and at PTB Braunschweig," Radiation Protection Dosimetry, vol. 83, pp. 281-291, 1999.
[22] M. Boezio, P. Carlson, T. Francke, N. Weber, M. Suffert, M. Hof, W. Menn, M. Simon, S. Stephens, and R. Bellotti, "The cosmic-ray proton and helium spectra between 0.4 and 200 GV," The Astrophysical Journal, vol. 518, p. 457, 1999.
[23] J. Kremer, M. Boezio, M. e. Ambriola, G. Barbiellini, S. Bartalucci, R. Bellotti, D. Bergström, U. Bravar, F. Cafagna, and P. Carlson, "Measurements of ground-level muons at two geomagnetic locations," Physical Review Letters, vol. 83, p. 4241, 1999.
[24] T. Sanuki, M. Fujikawa, K. Abe, K. Anraku, Y. Asaoka, H. Fuke, S. Haino, M. Imori, K. Izumi, and T. Maeno, "Measurements of atmospheric muon spectra at mountain altitude," Physics Letters B, vol. 541, pp. 234-242, 2002.
[25] M. Florek, J. Masarik, I. Szarka, D. Nikodemova, and H. Hrabovcova, "Natural neutron fluence rate and the equivalent dose in localities with different elevation and latitude," Radiation Protection Dosimetry, vol. 67, pp. 187-192, 1996.
[26] S.-H. Jiang, J.-J. Yeh, J.-H. Liang, C.-R. Chen, J.-P. Wang, and R.-J. Sheu, "Measurement of cosmic-ray neutron doses in Taiwan," in IRPA9: 1996 International Congress on Radiation Protection. Proceedings. Volume 2, 1996.
[27] C. Chung and C.-Y. Chen, "Cosmic‐ray‐induced neutron intensity in Taiwan and its variations during a typhoon," Journal of Geophysical Research: Atmospheres, vol. 102, pp. 29827-29832, 1997.
[28] R.-J. Sheu and S.-H. Jiang, "Cosmic-ray-induced neutron spectra and effective dose rates near air/ground and air/water interfaces in Taiwan," Health Physics, vol. 84, pp. 92-99, 2003.
[29] D. A. Rasolonjatovo, H. Suzuki, N. Hirabayashi, T. Nunomiya, T. Nakamura, and N. Nakao, "Measurement for the dose-rates of the cosmic-ray components on the ground," Journal of Radiation Research, vol. 43, pp. S27-S33, 2002.
[30] M. Kowatari, K. Nagaoka, S. Satoh, Y. Ohta, J. Abukawa, S. Tachimori, and T. Nakamura, "Evaluation of the altitude variation of the cosmic-ray induced environmental neutrons in the Mt. Fuji area," Journal of Nuclear Science and Technology, vol. 42, pp. 495-502, 2005.
[31] T. Nakamura, T. Nunomiya, S. Abe, K. Terunuma, and H. Suzuki, "Sequential measurements of cosmic-ray neutron spectrum and dose rate at sea level in Sendai, Japan," Journal of Nuclear Science and Technology, vol. 42, pp. 843-853, 2005.
[32] W. Rühm, U. Ackermann, C. Pioch, and V. Mares, "Spectral neutron flux oscillations of cosmic radiation on the Earth's surface," Journal of Geophysical Research: Space Physics, vol. 117, 2012.
[33] K. Fujitaka and S. Abe, "Effect of partition walls and neighboring buildings on the indoor exposure rate due to cosmic-ray muons," Health Physics, vol. 51, pp. 647-659, 1986.
[34] S.-H. Jiang, J.-J. Yeh, R.-Y. Lin, J.-H. Liang, R.-J Hsu, J.-R. Chen, J.-C. Liu, J.-P. Wang, and F.-D. Chang, "A study on natural background neutron dose," IEEE Transactions on Nuclear Science, vol. 41, pp. 993-998, 1994.
[35] 山西弘城, "Correlation between neutron component and ionizing component of cosmic ray dose in concrete buildings," Radioisotopes, vol. 55, pp. 385-389, 2006.
[36] K. Miller and H. Beck, "Indoor gamma and cosmic ray exposure rate measurements using a Ge spectrometer and pressurised ionisation chamber," Radiation Protection Dosimetry, vol. 7, pp. 185-189, 1984.
[37] P.-H. Lin, C.-J. Chen, C.-C. Huang, and Y.-M. Lin, "Study of the indoor cosmic radiation ionisation intensity," Radiation Protection Dosimetry, vol. 16, pp. 329-332, 1986.
[38] T. Nagaoka, "Distribution of gamma and cosmic ray exposure rates in a 12-storied concrete building," Radiation Protection Dosimetry, vol. 18, pp. 221-228, 1987.
[39] UNSCEAR, "Sources and effects of ionizing radiation," United Nations Publication, 1988.
[40] R. Filov and É. Krisyuk, "Irradiation dose of the population of the Soviet Union from cosmic radiation," Soviet Atomic Energy, vol. 47, pp. 1046-1048, 1979.
[41] U. Lauterbach and W. Kolb, "Beitrag der kosmischen strahlung zur naturlichen strahlenbelastung in wohnund arbeitsraumen," in Proceedings of the 12th Annual Meeting of the Fachverband fur Strahlenschutz e. V., in Radioaktivitat und Umwelt, II/993, 1978.
[42] H. Julius and R. Van Dongen, "Radiation doses to the population in the Netherlands, due to external natural sources," Science of the Total Environment, vol. 45, pp. 449-458, 1985.
[43] T. Sato, "Evaluation of world population-weighted effective dose due to cosmic ray exposure," Scientific Reports, vol. 6, p. 33932, 2016.
[44] UNSCEAR, "Sources and effects of ionizing radiation," United Nations Publication, 1994.
[45] G. Battistoni, F. Cerutti, A. Fasso, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, and P. Sala, "The FLUKA code: description and benchmarking," in AIP Conference Proceedings, pp. 31-49, 2007.
[46] G. Battistoni, A. Ferrari, T. Montaruli, and P. Sala, "Comparison of the FLUKA calculations with CAPRICE94 data on muons in atmosphere," Astroparticle Physics, vol. 17, pp. 477-488, 2002.
[47] Y.-F. Chen, J.-W. Lin, R.-J. Sheu, U.-T. Lin, and S.-H. Jiang, "Measurement of natural background radiation intensity on a train," Radiation Protection Dosimetry, vol. 144, pp. 663-667, 2010.
[48] C.-C. Liang, Y.-F. Chen, and J.-W. Lin, "A real-time multichannel detector system for large-scale environmental radiation survey," Progress in Nuclear Science and Technology, vol. 4, pp. 682-686, 2014.
[49] M. Collier, "Assembly manual for the Berkeley lab cosmic ray detector," Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2002.
[50] J. Herman, "Construction and use of a cosmic ray detector," McGill University, 2002.
[51] J.-W. Lin, Y.-F. Chen, R.-J. Sheu, and S.-H. Jiang, "Measurement of angular distribution of cosmic-ray muon fluence rate," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 619, pp. 24-27, 2010.
[52] 李國威, "全能域高靈敏度波那圓柱中子能譜儀之設計, 校正與應用," 清華大學核子工程與科學研究所學位論文, 2016.
[53] Google, "清華大學工科館地圖," Google Maps, https://www.google.com.tw/maps/place/清華大學工科館/@24.7908901,120.9894352,17.7z (accessed Mar 18, 2018)
[54] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, "FLUKA: A multi-particle transport code (Program version 2005)," 2005.
[55] S. Roesler, R. Engel, and J. Ranft, "The monte carlo event generator dpmjet-iii," in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, ed: Springer, pp. 1033-1038, 2001.
[56] G. Battistoni, A. Ferrari, P. Lipari, T. Montaruli, P. Sala, and T. Rancati, "A 3-dimensional calculation of the atmospheric neutrino fluxes," Astroparticle Physics, vol. 12, pp. 315-333, 2000.
[57] G. Battistoni, A. Ferrari, T. Montaruli, and P. Sala, "The FLUKA atmospheric neutrino flux calculation," Astroparticle Physics, vol. 19, pp. 269-290, 2003.
[58] J. Alcaraz, B. Alpat, G. Ambrosi, H. Anderhub, L. Ao, A. Arefiev, P. Azzarello, E. Babucci, L. Baldini, and M. Basile, "Cosmic protons," Physics Letters B, vol. 490, pp. 27-35, 2000.
[59] J. Alcaraz, B. Alpat, G. Ambrosi, H. Anderhub, L. Ao, A. Arefiev, P. Azzarello, E. Babucci, L. Baldini, and M. Basile, "Helium in near Earth orbit," Physics Letters B, vol. 494, pp. 193-202, 2000.
[60] T. Gaisser, M. Honda, P. Lipari, and T. Stanev, "Primary spectrum to 1 TeV and beyond," in Proceedings of 27th ICRC, Hamburg, 2001.
[61] V. Agrawal, T. Gaisser, P. Lipari, and T. Stanev, "Atmospheric neutrino flux above 1 GeV," Physical Review D, vol. 53, p. 1314, 1996.
[62] R. Caballero‐Lopez and H. Moraal, "Limitations of the force field equation to describe cosmic ray modulation," Journal of Geophysical Research: Space Physics, vol. 109, 2004.
[63] T. Sato and K. Niita, "Analytical functions to predict cosmic-ray neutron spectra in the atmosphere," Radiation Research, vol. 166, pp. 544-555, 2006.
[64] K. Abe, T. Sanuki, K. Anraku, Y. Asaoka, H. Fuke, S. Haino, N. Ikeda, M. Imori, K. Izumi, and T. Maeno, "Measurements of proton, helium and muon spectra at small atmospheric depths with the BESS spectrometer," Physics Letters B, vol. 564, pp. 8-20, 2003.
[65] P. Goldhagen, M. Reginatto, T. Kniss, J. Wilson, R. Singleterry, I. Jones, and W. Van Steveninck, "Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 476, pp. 42-51, 2002.
[66] R. J. McConn, C. J. Gesh, R. T. Pagh, R. A. Rucker, and R. Williams III, "Compendium of material composition data for radiation transport modeling," Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2011.
[67] P. N. Diep, P. N. Dinh, N. H. Duong, P. T. T. Nhung, P. Darriulat, N. T. Thao, D. Q. Thieu, and V. Van Thuan, "Measurement of the east–west asymmetry of the cosmic muon flux in Hanoi," Nuclear Physics B, vol. 678, pp. 3-15, 2004.
[68] S. Roesler and G. R. Stevenson, "deq99. f-A FLUKA user-routine converting fluence into effective dose and ambient dose equivalent," CERN Technical Note, CERNSC2006070RPTN, 2006.
[69] M. Pelliccioni, "Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code," Radiation Protection Dosimetry, vol. 88, pp. 279-297, 2000.
[70] T. Siiskonen, "Dose from slow negative muons," Radiation Protection Dosimetry, vol. 128, pp. 234-238, 2007.
[71] W.-L. Chen and R.-J. Sheu, "Studies of osmic-ray muons and neutrons in a five-story concrete building," Radiation Protection Dosimetry, pp. 1-11, 2017.
[72] P. Goldhagen, J. Clem, and J. Wilson, "The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude," Radiation Protection Dosimetry, vol. 110, pp. 387-392, 2004.
[73] N. Mauri and M. Sioli, "Measurement of the cosmic ray muon charge ratio with the OPERA detector," Nuclear Physics B - Proceedings Supplements, vol. 229-232, p. 565, 2012.
[74] S. Roesler, W. Heinrich, and H. Schraube, "Monte carlo calculation of the radiation field a aircraft altitudes," Radiation Protection Dosimetry, vol. 98, pp. 367-388, 2002.
[75] A. L. Hutcheson, J. E. Grove, L. J. Mitchell, B. F. Phlips, R. S. Woolf, and E. A. Wulf, "Effects of rain and soil moisture on background neutron measurements with the SuperMISTI neutron array," Radiation Measurements, vol. 99, pp. 50-59, 2017.
[76] L. Hendrick and R. Edge, "Cosmic-ray neutrons near the Earth," Physical Review, vol. 145, p. 1023, 1966.
[77] M. Zreda, W. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem, "COSMOS: the cosmic-ray soil moisture observing system," Hydrology and Earth System Sciences, vol. 16, pp. 4079-4099, 2012.
[78] R. Rosolem, W. Shuttleworth, M. Zreda, T. Franz, X. Zeng, and S. Kurc, "The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system," Journal of Hydrometeorology, vol. 14, pp. 1659-1671, 2013.
[79] W.-L. Chen, S.-H. Jiang, and R.-J. Sheu, "Cosmic-ray neutron simulations and measurements in Taiwan," Radiation Protection Dosimetry, vol. 161, pp. 303-306, 2014.
[80] P. H. Jensen, "Calculated shielding factors for selected European houses," Risø National Laboratory, 1984.
[81] D. A. Smith, "World Population Density Interactive Map," LuminoCity3D, http://luminocity3d.org/WorldPopDen/#8/23.639/119.784 (accessed Mar 18, 2018)
[82] CGIARCSI, "SRTM 90m Digital Elevation Database v4.1," http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1 (accessed Mar 18, 2018)
[83] K. N. Borozdin, G. E. Hogan, C. Morris, W. C. Priedhorsky, A. Saunders, L. J. Schultz, and M. E. Teasdale, "Surveillance: Radiographic imaging with cosmic-ray muons," Nature, vol. 422, pp. 277-277, 2003.
[84] H. K. M. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, M. Takeo, J. Oikawa, T. Ohminato, Y. Aoki, E. Koyama, H. Tsuji, and K. Niwa, "High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan," Earth and Planetary Science Letters, vol. 263, pp. 104-113, 2007.
[85] H. Miyadera, K. N. Borozdin, S. J. Greene, Z. Lukić, K. Masuda, E. C. Milner, C. L. Morris, and J. O. Perry, "Imaging Fukushima Daiichi reactors with muons," AIP Advances, vol. 3, p. 052133, 2013.
[86] G. Jonkmans, V. N. P. Anghel, C. Jewett, and M. Thompson, "Nuclear waste imaging and spent fuel verification by muon tomography," Annals of Nuclear Energy, vol. 53, pp. 267-273, 2013.
[87] K. Borozdin, S. Greene, Z. Lukić, E. Milner, H. Miyadera, C. Morris, and J. Perry, "Cosmic ray radiography of the damaged cores of the Fukushima reactors," Physical review letters, vol. 109, p. 152501, 2012.
[88] M. Kodama, K. Nakai, S. Kawasaki, and M. Wada, "An application of cosmic-ray neutron measurements to the determination of the snow-water equivalent," Journal of Hydrology, vol. 41, pp. 85-92, 1979.
[89] I. G. Mitrofanov, A. B. Sanin, W. Boynton, G. Chin, J. Garvin, D. Golovin, L. Evans, K. Harshman, A. Kozyrev, and M. Litvak, "Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND," Science, vol. 330, pp. 483-486, 2010.
[90] M. Litvak, I. Mitrofanov, Y. N. Barmakov, A. Behar, A. Bitulev, Y. Bobrovnitsky, E. Bogolubov, W. Boynton, S. Bragin, and S. Churin, "The dynamic albedo of neutrons (DAN) experiment for NASA's 2009 Mars science laboratory," Astrobiology, vol. 8, pp. 605-612, 2008.