研究生: |
陳均亦 Chen, Chun-Yi |
---|---|
論文名稱: |
面心立方低中高熵合金不同溫度下之微奈米尺度機械性質及變形行為研究 Micro-to-Nano Mechanical Properties and Deformation Behaviors of Face-centered Cubic Low-, Medium- and High-entropy Alloys at Different Temperatures |
指導教授: |
張守一
Chang, Shou-Yi |
口試委員: |
黃爾文
Huang, E-Wen 葉安洲 Yeh, An-Chou 蔡哲瑋 Tsai, Che-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 高熵合金 、異向性 、機械性質 、變形行為 、壓痕測試 、微米柱 、電子顯微鏡 |
外文關鍵詞: | High Entropy Alloy, Anisotropy, Mechanical Property, Deformation Behavior, Nanoindentation, Micropillar, Electron Microscope |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高熵合金是由多種主元素以相近比例混合所形成之合金,由於組成元素種類繁多,原子間尺寸和電荷密度上的差異導致晶格扭曲效應的產生,造就了許多特殊的機械性質與變形行為。其中,FCC結構的高熵合金在室溫下擁有良好的強度、延展性、破裂韌性、抗疲勞等特性,低溫條件下上述機械性質更能獲得進一步提升。因此,溫度對高熵合金機械性質產生之影響為一值得探討的主題。延續實驗室過去在室溫下對FCC系列合金進行之一系列研究,本研究在不同溫度下針對晶格扭曲程度相當的FCC系列合金,包括Ni-4 at%W低熵、FeCrNi中熵與CoCrFeMnNi高熵合金不同晶體方向之晶粒進行奈米壓痕測試,分析溫度對其異向性造成之改變。室溫下高熵合金彈性異向性較低、中熵合金相對微弱。不同溫度下各合金彈、塑性異向性有所改變,然而並未觀察到明顯之單調趨勢。此外,針對高熵合金微米柱室溫壓縮測試中產生口香糖狀 (gum-like) 變形的 [111] 方向晶粒,進行高、低溫壓縮測試與TEM縱剖面觀察,研究溫度對變形行為造成之影響。實驗結果顯示,高熵合金微米柱在高溫下依舊展現口香糖狀變形行為,低溫下則能觀察到密集疊差與變形雙晶的出現。
High-entropy alloys are solid solutions consisting of multi-principal with near-equimolar ratios. Due to the diversity of constituent elements, atomic size difference and electron density inconsistency give rise to the severe lattice distortion effect, and hence various unique mechanical properties and deformation behaviors. Among this novel family, FCC HEAs possess high strength, ductility, and fracture toughness at room temperature. These mechanical properties are further reinforced under cryogenic circumstances. The effects of temperature on properties of HEAs is thus a topic worth investigating. Carrying on previous research on a series of FCC alloys at room temperature, in this research we conducted nanoindentation tests on grains with different crystallographic orientations from a series of FCC alloys with comparable lattice distortion, including Ni-4 at%W、FeCrNi and CoCrFeMnNi, at different temperature to analyze the resulting change of anisotropy. The HEA exhibited a relatively weaker elastic anisotropy. As the temperature varied, the elastic/plastic anisotropy of each alloy changed correspondingly, yet a monotonic trend was not discovered. On top of that, to the [111] grains which gum-like deformation takes place at room temperature HEA compression tests, we performed cryogenic and high-temperature micropillar compression tests and TEM cross-section observation to find out the impact of temperature on their deformation behaviors. It was found that CoCrFeMnNi HEA micropillars retained the gum-like deformation behavior at high temperature, while stacking faults and deformation twins were observed at cryogenic cases.
[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6 (2004) 299-303.
[2] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
[3] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nature Reviews Materials 4(8) (2019) 515-534.
[4] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International 21(6) (2011) 433-446.
[5] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia 61(7) (2013) 2628-2638.
[6] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Advanced Engineering Materials 10(6) (2008) 534-538.
[7] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics 132(2-3) (2012) 233-238.
[8] H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, D. Raabe, Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy, Materials Today 21(10) (2018) 1003-1009.
[9] Y. G. Yao, Z. N. Huang, P. F. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. J. Chen, A. M. Nie, T. C. Pu, M. Rehwoldt, D. W. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, and L. B. Hu, Carbothermal shock synthesis of HEA nanoparticles, Science 359 (2018) 1489-1494.
[10] C. Kenel, N.P.M. Casati, D.C. Dunand, 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices, Nat Commun 10(1) (2019) 904.
[11] B.S. Murty, J. W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-Entropy Alloys, Elsevier, London, UK, 2014.
[12] X.Z. Lim, Metal Mixology, Nature 533 (2016) 306-307.
[13] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[14] S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Kormann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion, Adv Mater 31(8) (2019) e1807142.
[15] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia 61(15) (2013) 5743-5755.
[16] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
[17] M. Naeem, H. Y. He, F. Zhang, H. L. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. D. Wu, F. Wang, Y. Wu, Z. P. Lu, Z. W. Zhang, C. T. Liu, and X. L. Wang, Cooperative deformation in high-entropy alloys at ultralow temperatures, Science Advances 6 (2020) 1-8.
[18] Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy, Nat Commun 8 (2017) 15719.
[19] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Materialia 94 (2015) 124-133.
[20] K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, R.O. Ritchie, Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi, Intermetallics 88 (2017) 65-72.
[21] M.Z. Ghomsheh, G. Khatibi, B. Weiss, M. Lederer, S. Schwarz, A. Steiger-Thirsfeld, M.A. Tikhonovsky, E.D. Tabachnikova, E. Schafler, High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy, Materials Science and Engineering: A 777 (2020).
[22] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[23] T. Chookajorn, H. A. Murdoch, C. A. Schuh, Design of Stable Nanocrystalline Alloys, Science 337 (2018) 951-954.
[24] S. Praveen, J. Basu, S. Kashyap, R.S. Kottada, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures, Journal of Alloys and Compounds 662 (2016) 361-367.
[25] S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, A. K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature 398 (1999) 684-686.
[26] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765.
[27] S.R. Reddy, S. Bapari, P.P. Bhattacharjee, A.H. Chokshi, Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy, Materials Research Letters 5(6) (2017) 408-414.
[28] M.T. Tsai, J.C. Huang, P.H. Lin, T.Y. Liu, Y.C. Liao, J.S.C. Jang, S.X. Song, T.G. Nieh, Creep of face-centered-cubic {111} and {100} grains in FeCoNiCrMn and FeCoNiCrMn Al alloys: Orientation and solid solution effects, Intermetallics 103 (2018) 88-96.
[29] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science 47(9) (2012) 4062-4074.
[30] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509(20) (2011) 6043-6048.
[31] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high–temperature properties, Journal of Alloys and Compounds 760 (2018) 15-30.
[32] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574(7777) (2019) 223-227.
[33] Q.J. Li, H. Sheng, E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat Commun 10(1) (2019) 3563.
[34] Y. Zou, J.M. Wheeler, H. Ma, P. Okle, R. Spolenak, Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability, Nano Lett 17(3) (2017) 1569-1574.
[35] H.S. Oh, S.J. Kim, K. Odbadrakh, W.H. Ryu, K.N. Yoon, S. Mu, F. Kormann, Y. Ikeda, C.C. Tasan, D. Raabe, T. Egami, E.S. Park, Engineering atomic-level complexity in high-entropy and complex concentrated alloys, Nat Commun 10(1) (2019) 2090.
[36] Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat Commun 8 (2017) 14390.
[37] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat Commun 7 (2016) 10602.
[38] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74-78.
[39] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Materialia 128 (2017) 292-303.
[40] Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat Commun 6 (2015) 10143.
[41] X.L. Wu, J. Narayan, Y.T. Zhu, Deformation twin formed by self-thickening, cross-slip mechanism in nanocrystalline Ni, Applied Physics Letters 93(3) (2008).
[42] J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals, Acta Materialia 58(6) (2010) 2262-2270.
[43] Z.J. Wang, Q.J. Li, Y. Li, L.C. Huang, L. Lu, M. Dao, J. Li, E. Ma, S. Suresh, Z.W. Shan, Sliding of coherent twin boundaries, Nat Commun 8(1) (2017) 1108.
[44] F. Siska, J. Cech, P. Hausild, H. Hadraba, Z. Chlup, R. Husak, L. Stratil, Twinning in CoCrFeNiMn high entropy alloy induced by nanoindentation, Materials Science and Engineering: A 784 (2020).
[45] I. Gutierrez-Urrutia, D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel, Acta Materialia 60(16) (2012) 5791-5802.
[46] Q. Ding, X. Fu, D. Chen, H. Bei, B. Gludovatz, J. Li, Z. Zhang, E.P. George, Q. Yu, T. Zhu, R.O. Ritchie, Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures, Materials Today 25 (2019) 21-27.
[47] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature 534(7606) (2016) 227-30.
[48] S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy, Nat Commun 11(1) (2020) 826.
[49] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Materialia 124 (2017) 143-150.
[50] J.T. Fan, L.J. Zhang, P.F. Yu, M.D. Zhang, G. Li, P.K. Liaw, R.P. Liu, A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression performance, Scripta Materialia 159 (2019) 18-23.
[51] S.S. Nene, K. Liu, S. Sinha, M. Frank, S. Williams, R.S. Mishra, Superplasticity in fine grained dual phase high entropy alloy, Materialia 9 (2020).
[52] Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Materialia 131 (2017) 323-335.
[53] T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy, Acta Materialia 110 (2016) 352-363.
[54] Y.N. Osetsky, G.M. Pharr, J.R. Morris, Two modes of screw dislocation glide in fcc single-phase concentrated alloys, Acta Materialia 164 (2019) 741-748.
[55] X.D. Xu, P. Liu, Z. Tang, A. Hirata, S.X. Song, T.G. Nieh, P.K. Liaw, C.T. Liu, M.W. Chen, Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi, Acta Materialia 144 (2018) 107-115.
[56] J.R. Greer, C.R. Weinberger, W. Cai, Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations, Materials Science and Engineering: A 493(1-2) (2008) 21-25.
[57] S. Brinckmann, J.Y. Kim, J.R. Greer, Fundamental differences in mechanical behavior between two types of crystals at the nanoscale, Phys Rev Lett 100(15) (2008) 155502.
[58] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, Journal of Alloys and Compounds 790 (2019) 732-743.
[59] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563(7732) (2018) 546-550.
[60] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of Applied Physics 109(10) (2011).
[61] S. Zhao, Y.N. Osetsky, Y. Zhang, Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys, Journal of Alloys and Compounds 701 (2017) 1003-1008.
[62] Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Beland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys, Nat Commun 6 (2015) 8736.
[63] P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat Commun 10(1) (2019) 489.
[64] D.A. Hughes, N. Hansen, D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations, Scripta Materialia 48 (2003) 147-153.
[65] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Materialia 68(7) (2013) 526-529.
[66] Y.J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat Commun 9(1) (2018) 4063.
[67] Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, H. Gleiter, The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals, Scripta Materialia 54(6) (2006) 1163-1168.
[68] Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, H. Hahn, Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals, Acta Materialia 56(5) (2008) 1126-1135.
[69] T. Yang, Y. L. Zhao, Y. Tong, Z. B. Jiao, J. Wei, J. X. Cai, X. D. Han, D. Chen, A. Hu, J. J. Kai, K. Lu, Y. Liu, and C. T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, 362 (2018) 933-937.
[70] G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat Mater 12(4) (2013) 344-50.
[71] Y. Xiao, Y. Zou, H. Ma, A.S. Sologubenko, X. Maeder, R. Spolenak, J.M. Wheeler, Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness, Scripta Materialia 168 (2019) 51-55.
[72] Y. Xie, T. Xia, D. Zhou, Y. Luo, W. Zeng, Z. Zhang, J. Wang, J. Liang, D. Zhang, A novel nanostructure to achieve ultrahigh strength and good tensile ductility of a CoCrFeNiMn high entropy alloy, Nanoscale 12(9) (2020) 5347-5352.
[73] Y.M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Materials Science and Engineering: A 375-377 (2004) 46-52.
[74] K. Lu, L. Lu, S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, 324 (2009) 349-352.
[75] M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength, Proc Natl Acad Sci U S A 115(28) (2018) 7224-7229.
[76] Y. M. Wang, M. W. Chen, F. H. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.
[77] M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Applied Materials Today 18 (2020).
[78] E. Ma, T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Materials Today 20(6) (2017) 323-331.
[79] J.R. Greer, W.D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Physical Review B 73(24) (2006).
[80] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale, Science 318 (2007) 251-254.
[81] M. C. Miguel, A. Vespignani, S. Zapperi,, J.R.G. J. Weiss, Intermittent dislocation flow in viscoplastic deformation, Nature 410 (2001) 667-671.
[82] M.E.J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics 46(5) (2005) 323-351.
[83] D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, Scale-Free Intermittent Flow in Crystal Plasticity, Science 312 (2006) 1188-1190.
[84] X.C. L. Lu, X. Huang, K. Lu, Revealing the Maximum Strength in Nanotwinned Copper, 323 (2009) 607-610.
[85] L. Patriarca, A. Ojha, H. Sehitoglu, Y.I. Chumlyakov, Slip nucleation in single crystal FeNiCoCrMn high entropy alloy, Scripta Materialia 112 (2016) 54-57.
[86] X. Feng, J. Zhang, K. Wu, X. Liang, G. Liu, J. Sun, Ultrastrong Al0.1CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins, Nanoscale 10(28) (2018) 13329-13334.
[87] Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Strong crystal size effect on deformation twinning, Nature 463(7279) (2010) 335-8.
[88] Y. Zou, H. Ma, R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nat Commun 6 (2015) 7748.
[89] C.-C. Yen, G.-R. Huang, Y.-C. Tan, H.-W. Yeh, D.-J. Luo, K.-T. Hsieh, E.W. Huang, J.-W. Yeh, S.-J. Lin, C.-C. Wang, C.-L. Kuo, S.-Y. Chang, Y.-C. Lo, Lattice distortion effect on elastic anisotropy of high entropy alloys, Journal of Alloys and Compounds 818 (2020).
[90] T. Teramoto, K. Yamada, R. Ito, K. Tanaka, Monocrystalline elastic constants and their temperature dependences for equi-atomic Cr-Mn-Fe-Co-Ni high-entropy alloy with the face-centered cubic structure, Journal of Alloys and Compounds 777 (2019) 1313-1318.
[91] G. Laplanche, M. Schneider, F. Scholz, J. Frenzel, G. Eggeler, J. Schreuer, Processing of a single-crystalline CrCoNi medium-entropy alloy and evolution of its thermal expansion and elastic stiffness coefficients with temperature, Scripta Materialia 177 (2020) 44-48.
[92] M. Bönisch, Y. Wu, H. Sehitoglu, Hardening by slip-twin and twin-twin interactions in FeMnNiCoCr, Acta Materialia 153 (2018) 391-403.
[93] K.-H. Lin, S.-Y. Chang, Y.-C. Lo, C.-C. Wang, S.-J. Lin, J.-W. Yeh, Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test, Intermetallics 118 (2020).
[94] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[95] V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, A. Hohenwarter, Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation, Journal of Materials Research 32(14) (2017) 2658-2667.
[96] J.M. Wheeler, D.E.J. Armstrong, W. Heinz, R. Schwaiger, High temperature nanoindentation: The state of the art and future challenges, Current Opinion in Solid State and Materials Science 19(6) (2015) 354-366.
[97] Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Materialia 65 (2014) 85-97.
[98] Y. Hu, L. Shu, Q. Yang, W. Guo, P.K. Liaw, K.A. Dahmen, J.-M. Zuo, Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars, Communications Physics 1(1) (2018).
[99] H. Chan, M. Cherukara, T.D. Loeffler, B. Narayanan, S.K.R.S. Sankaranarayanan, Machine learning enabled autonomous microstructural characterization in 3D samples, npj Computational Materials 6(1) (2020).
[100] D. Sopu, A. Stukowski, M. Stoica, S. Scudino, Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses, Phys Rev Lett 119(19) (2017) 195503.
[101] N. Burbery, R. Das, G. Ferguson, Mobility of dissociated mixed dislocations under an Escaig stress, Modelling and Simulation in Materials Science and Engineering 25(4) (2017).
[102] S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses, Journal of Non-Crystalline Solids 321(1-2) (2003) 120-125.
[103] T. J. Huang, S. Y. Chang, Anisotropic Mechanical Properties and Deformation Behaviors of Face-centered Cubic Low-, Medium- and High-entropy Alloys, National Tsing Hua University, 2017.
[104] W. J. Chen, S. Y. Chang, Anisotropic Mechanical Properties and Deformation Behaviors of Body-centered Cubic Low-, Medium- and High-entropy Alloys, National Tsing Hua University, 2018.