簡易檢索 / 詳目顯示

研究生: 陳君柔
論文名稱: 燃耗對增殖因數影響之臨界分析
Criticality Analysis of Burnup Effect on Multiplication Factor
指導教授: 江祥輝
Jiang, Shiang-Huei
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: 臨界分析增殖因數燃耗效應
外文關鍵詞: criticality analysis, multiplication factor, burnup effect, lead-cooled fast reactor, SSTAR
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨界安全分析在核燃料循環過程中扮演極為重要的角色,而燃料中的燃耗效應是影響臨界狀態的主要原因。本論文針對用過核燃料乾式貯存設施進行燃耗信用效應(Burnup Credit)對臨界分析影響之探討;並從事第四代鉛冷快中子反應器SSTAR(Small Secure Transportable Autonomous Reactor)的爐心模擬計算,並分析燃耗期間爐心各項物理特性。
    本研究採用SCALE(Standardized Computer Analyses for Licensing Evaluation)程式系統版本5.1與6.0,以其中之三維蒙地卡羅臨界計算程式KENO進行複雜問題的幾何模擬,並選用適當截面數據庫,彙同相關截面處理程式模組、燃耗計算程式模組結合成之計算序列進行計算分析。
    用過核燃料乾式貯存系統之傳送護箱裝載滿24束PWR燃料,235U濃縮度為4.2 wt%,中子吸收板含有75%的10B。以全新燃料計算,增殖因數(k-eff)結果為0.9227;假設燃料經過45,000 MWD/MTU的燃耗,考慮於系統中陸續加入經燃耗產生的各種錒系元素與分裂產物,結果顯示增殖因數隨之下降,當考慮程式內建所有可得的錒系元素與分裂產物時,k-eff最後降低至0.6270。
    SSTAR鉛冷快中子反應器的特點為很長的燃料週期,燃料為氮化超鈾元素,以固定比功率(specific power)21.19 MW/MTHM,相當約150MW的功率運轉,計算結果顯示此反應器可維持20年無須更換燃料。運轉過程中,爐心各區總通率約在5.07×1014neutrons/cm2-sec至1.70×1015 neutrons/cm2-sec間。低濃縮度燃料區的平均能量範圍約為3.35×105eV至4.41.×105eV,趨勢為上升或持平;高濃縮度燃料區則從6.00×105 eV降至4.80×105 eV。燃料中的U-235與U-238量隨時間呈現消耗狀態;Pu-239在低濃縮度區域為上升,在高濃縮度區則是消耗。


    During all process of nuclear fuel cycle, criticality safety analysis is indispensable. Burnup effect dominates the result of criticality analysis. In this study, we evaluated the effect of burnup credit on the k-eff of a spent fuel dry storage transfer cask system, and performed core neutronics analysis for a generation IV lead-cooled fast reactor SSTAR(Small Secure Transportable Autonomous Reactor).
    The computer software systems SCALE 5.1 and 6.0 were used in this thesis. We modeled complex geometries by taking advantage of the 3D Monte Carlo code KENO, which is a functional module for criticality evaluation in SCALE. Several sequences consisting of cross section processing, depletion modules and KENO were used to complete the assessments.
    We consider a transfer cask loaded with 24 PWR fuel assemblies with 4.2 % 235U enrichment. For fresh fuels, k-eff was calculated to be 0.9227. For fuel assemblies with 45,000MWD/MTU burnup, k-eff kept decreasing as actinides and fission products being added into the fuel batch by batch. When all available actinides and fission products are included, k-eff was reduced to 0.6270.
    The SSTAR lead-cooled fast reactor is characterized by its long core life. The fuel composition is transuranium nitride, and the specific power is 21.19 MW/MTHM. The calculated result shows that the reactor can last for 20 years without refueling. During operation, the total flux of each core region varies from 5.07×1014 neutrons/cm2-sec to 1.70×1015 neutrons/cm2-sec. The average energy of low-enriched fuel region is about 3.35×105 eV to 4.41×105 eV, and the trend is increasing or fixed; in high-enriched fuel region the average energy decreases from 6.00 × 105 eV to 4.80 × 105 eV. The amount of U-235 and U-238 consumed with time; Pu-239 is bred in low-enriched region but consumed in high-enriched region with time.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 1.1 臨界分析計算與燃耗效應 1 1.2 第四代鉛冷快中子反應器簡介 2 1.3 研究目的 7 第二章 程式介紹 8 2.1 SCALE計算機程式系統簡介 8 2.2 執行臨界與燃耗計算相關之功能模組簡介 8 2.2.1 KENO V.a與KENO-VI功能模組簡介及比較 8 2.2.2 BONAMI 15 2.2.3 NITAWL 15 2.2.4 CENTRM/PMC 15 2.2.5 ORIGEN-S與ORIGEN-ARP 16 2.3 CSAS、STARBUCS 與TRITON控制模組簡介 18 2.3.1 CSAS 18 2.3.2 STARBUCS 18 2.3.3 TRITON 22 2.4 圖形化使用者介面(Graphical User Interface)工具簡介 25 2.4.1 KENO3D 25 2.4.2 GEEWIZ 25 第三章 用過核燃料乾式貯存運送護箱臨界分析與燃耗效應 26 3.1 乾式貯存護箱介紹 26 3.2 乾式貯存運送護箱模型的建立 27 3.3 改變護箱高度、截面資料庫、邊界條件之臨界計算結果 29 3.3.1 護箱幾何條件對k-eff值的影響 29 3.3.2 選用不同截面資料庫對k-eff值的影響 33 3.3.3 定義不同邊界條件對k-eff值的影響 34 3.4 考慮燃耗效應的計算結果 35 第四章 第四代鉛冷快中子反應器SSTAR(Small Secure Transportable Autonomous Reactor)臨界分析計算 38 4.1 SSTAR模型的建立 38 4.1.1 參考文獻之設計 38 4.1.2 燃料棒組成的假定 40 4.1.3 以三十年運轉年限為目標推估初始燃料量及控制棒組成 41 4.1.4 完整爐心模擬 43 4.2 SSTAR起爐相關參數與控制棒深度的調整 46 4.2.1 起爐相關參數 46 4.2.2 控制棒位置設定 47 4.3 以TRITON模擬計算結果 47 4.3.1 運轉期間增殖因數的變化 47 4.3.2 控制棒插入深度與控制棒值 50 4.3.3 能譜、總能通率、平均能量 54 4.3.4 燃料中重要核種含量變化 58 4.3.5 爐心功率分佈 62 第五章 結論 63 第六章 未來工作 64 參考文獻 65 附錄 67 圖附3-1 Westinghouse 17×17 OFA 燃料束幾何程式輸入檔 67 圖附3-2 含底座頂蓋完整護箱臨界計算程式輸入檔 68 圖附3-3 以STARBUCS考慮錒系元素及分裂產物計算程式輸入檔 75 圖附4-1 改變燃料組成與護套厚度以使系統達到臨界之程式輸入檔 83 圖附4-2 以2mm護套厚度連續燃耗30年之程式輸入檔 87 圖附4-3 第一年與第二年之計算輸入檔 107

    [1] The Generation IV International Forum(GIF). GIF 2007 Annual Report, p. 38-43.
    [2] L.M. Petrie and N.F. Landers. KENO V.a: An Improved Monte Carlo Criticality Program with Supergrouping. Oak Ridge Natl. Lab., March 2000.
    [3] D.F. Hollenbach, L.M. Petrie, and N.F. Landers. KENO-VI: A General Quadratic Version of the KENO Program. Oak Ridge Natl. Lab., March 2000.
    [4] N.M. Greene. BONAMI: Resonance Self-Shielding by the Bondarenko Method. Oak Ridge Natl. Lab., January 2009.
    [5] N.M. Greene, L.M. Petrie, and R. M. Westfall. NITAWL: Scale System Module for Performing Resonance Shielding and Working Library Production. Oak Ridge Natl. Lab., January 2009.
    [6] M.L. Williams, M. Asgari, and D.F. Hollenbach. CENTRM: A One-Dimensional Neutron Transport Code for Computing Pointwise Energy Spectra. Oak Ridge Natl. Lab., January 2009.
    [7] M.L. Williams and D.F. Hollenbach. PMC: A Program to Produce Multigroup Cross Sections Using Pointwise Energy Spectra from CENTRM. Oak Ridge Natl. Lab., January 2009.
    [8] I.C. Gauld, O.W. Hermann, and R.M. Westfall. ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms. Oak Ridge Natl. Lab., January 2009.
    [9] I.C. Gauld, S.M. Bowman, and J.E. Horwedel. ORIGEN-ARP: Automatic Rapid Processing for Spent Fuel Depletion, Decay, and Source Term Analysis. Oak Ridge Natl. Lab., January 2009.
    [10] N.F. Landers and L.M. Petrie. CSAS: Control Module for Enhanced Criticality Safety Analysis Sequences. Oak Ridge Natl. Lab., March 2000.
    [11] G. Radulescu and I.C. Gauld. STARBUCS: A SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit. Oak Ridge Natl. Lab., January 2009.
    [12] M.D. DeHart. TRITON: A Two-Dimensional Transport and Depletion Module for Characterization of Spent Nuclear Fuel. Oak Ridge Natl. Lab., January 2009.
    [13] J.E. Horwedel and S.M. Bowman. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models. Oak Ridge Natl. Lab., March 2000.
    [14] R.D. Busch and S.M. Bowman. KENO V.a Primer: A Primer for Criticality Calculations with SCALE/KENO V.a Using GEEWIZ. Oak Ridge Natl. Lab., December 2005.
    [15] NAC International. FSAR-UMS Universal Storage System Docket No. 72-1015, March 2004.
    [16] S.M. Bowman and M.E. Dunn. SCALE Cross-Section Libraries. Oak Ridge Natl. Lab., January 2009.
    [17] James J. Sienicki et al., “Status Report on the Small Secure Transportable Autotomous Reactor (SSTAR)/ Lead-Cooled Fast Reactor (LFR) and Supporting Research and Development,“ ANL-GENIV-089, September 2006.
    [18] J.J. Sienicki, D.C. Wade, A.V. Moisseytsev et al., ”STAR Performer,” Nuclear Engineering International, vol. 50, no. 612, July 2005, 24-28.
    [19] 陳彥甫,「核燃料循環次要錒系元素減量理論探討」,國立清華大學工程與系統科學系,碩士論文,2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE