| 研究生: |
孫郁明 Yu-Ming Sun |
|---|---|
| 論文名稱: |
添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發性記憶體之研究 Synthesis and characterization of Lanthanoid(La,Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications |
| 指導教授: |
黃振昌
Jenn-Chang Hwang 甘炯耀 Jon-Yiew Gan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 鐵電薄膜 、鈦酸鉍 、異向性 、疲勞性質 |
| 外文關鍵詞: | ferroelectric thin films, bismuth titanate, anisotropic properties, fatigue properties |
| 相關次數: | 點閱:187 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文著重於添加鑭的鈦酸鉍(Bi3.25La0.75Ti3O12,BLT)鐵電薄膜在非揮發性鐵電記憶體(NvFRAM)上的應用,利用化學溶液鍍膜法(chemical solution deposition)在Pt/TiOx/SiO2/Si(100)下電極基板上鍍製具(117)、(001)優選指向的BLT薄膜,並探討優選指向對薄膜的微觀結構、漏電流特性、介電特性、鐵電性質的影響。有關薄膜的表面特性則利用X光光電子能譜儀(XPS)來研究,藉由薄膜表面元素的電子軌域束縛能譜來觀察表面的化學成份以及缺陷的分佈。此外,添加其他鑭系元素也會改善鈦酸鉍薄膜的性質,因此本論文製備添加釤的鈦酸鉍鐵電薄膜,其各項性質也一併探討。
以Pt為下電極可在600℃以上鍍出Bi3.25La0.75Ti3O12層狀鈣鈦礦結構多晶薄膜,且利用不同的烘烤及結晶熱處理條件可有效控制BLT薄膜的指向,經過低溫烘烤的BLT傾向於形成(117)方向的晶粒,高溫烘烤則傾向於形成(001)方向的晶粒。由薄膜的結晶繞射圖與表面微結構,顯示BLT的結晶指向對晶粒的特徵有很大的影響,(117)與(001)方向的晶粒形狀有很大的差別,(117)晶粒呈現長板狀,(001)晶粒則為平板狀,兩者皆以層狀的方式堆疊,隨α值下降,薄膜的優選指向由(117)轉變為(001),此時長板狀晶粒所佔有的面積比率下降,而平板狀晶粒的面積比率則上升。BLT薄膜的介電常數隨α值上升而增加,當薄膜為(117)優選指向時其介電常數最大,約為(001)優選指向的1.4倍,而散逸因子tanδ則分布在0.02~0.05的範圍內。在漏電流方面,BLT薄膜的初始電場隨α值增加而下降,達到崩潰前的漏電流密度低於10-6 A/cm2。由於BLT具有異向性,隨著α值由0.024上升到0.92,Pr值由3.3 μC/cm2增加至12 μC/cm2,Ec則由55 kV/cm增至78 kV/cm。疲勞測試的結果,顯示Pt/BLT/Pt電容經過1×1010次的極化反轉之後,可反轉極化值P*-P^並無明顯的衰退,P-E曲線沒有顯得不對稱,代表沒有偏印錯誤(imprint failure),然而隨著試片極化值愈大,疲勞現象則愈明顯。在retention測試方面,所有薄膜在脈波寫入經過104秒之後,retained charge([(+P*)-(+P^)])並無明顯的變化。
薄膜的表面特性上,(117)優選指向BLT薄膜表層的Bi含量較(001)優選指向高,而Bi−O鍵結的化學穩定性較差,容易斷裂而導致Bi3+還原而形成氧空缺聚集。La在(001)與(117)優選指向BLT薄膜表層的含量相當,離子轟擊後, La含量均明顯增加,離子轟擊後La 3d訊號峰的半高寬維持不變,可知(001)優選指向BLT薄膜的La−O鍵結似乎比較穩定,因此可推論La−O鍵結的穩定性與抗疲勞的特性有關。(001)優選指向BLT薄膜表層的Ti含量高於(117)優選指向薄膜,經過離子轟擊後,(001)優選指向BLT薄膜Ti−O鍵結似乎較穩定,訊號峰的半高寬幾乎不變,而(117)優選指向BLT薄膜的Ti−O鍵結似乎會受到不穩定的Bi−O鍵結影響,譜峰的半高寬明顯變寬。
BSmT薄膜的結晶指向在680℃以下,傾向於形成(117)方向的晶粒,溫度介於680℃~700℃則形成混合指向晶粒,750℃則形成(001)方向的晶粒。BSmT薄膜的微結構與BLT類似,(117)晶粒呈現長板狀,(001)晶粒則為平板狀,兩者皆以層狀的方式堆疊。BSmT薄膜的介電常數隨α值上升而增加,當薄膜為(117)優選指向時其介電常數值最大,約為(001)優選指向的2.4倍,而散逸因子tanδ則分佈在0.02~0.04的範圍內。BSmT薄膜的初始電場隨α值增加而下降,(117)優選指向的BSmT薄膜之初始電場為~106 kV/cm,明顯比(001)優選指向薄膜(~127 kV/cm)還來得小。隨著α值由0.006上升到0.85,BSmT薄膜的P-E電滯曲線的形狀逐漸趨於方正、飽和,Pr值由0.524 μC/cm2增加至11.3 μC/cm2,Ec則由84.6 kV/cm增至142 kV/cm。Pt/BSmT/Pt電容的疲勞特性深受薄膜結晶指向影響,(117)優選指向的抗疲勞表現優於混合指向。Pt/BSmT/Pt電容的電荷保持性會受到薄膜結晶指向影響,(117)優選指向BSmT薄膜的電荷保持性較佳,混合指向的薄膜則較差。
Chapter 1
[1] J. F. Scott, C. Paz de Araujo, Science 246, (2000) 100.
[2] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, (1997).
[3] G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar, Integrated Ferroelectrics 6, (1995) 93.
[4] H. Takasu, Integrated Ferroelectrics 14, (1997) 1.
[5] S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, Integrated Ferroelectrics 17, (1997) 81.
[6] Betty Prince, “Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers, (2002).
[7] K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, J. Vac. Sci. Technol. B 15, (1997) 2274.
[8] S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8, (1979) 333.
[9] Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai, Akio Kitagawa and Masakuni Suzuki, Jpn. J. Appl. Phys. 39, (2000) 6157.
[10] “FRAM Guide Book, Chapter 2”, Fujitsu Web Page <www.fujitsu.com>.
[11] C. Feldman, View of Science Instrument 26, (1954) 463.
[12] I. H. Pratt and S. Firestone, J. Vac. & Sci. Technol. 8, (1971) 256.
[13] R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, and O. Auciello, Appl. Phys. Lett. 64, 2511 (1995).
[14] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl. Phys. Lett. 66, 239 (1995).
[15] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, (1995) 627.
[16] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[17] A. Kingon, Nature (London) 401, (1999) 658.
[18] L. B. Kong and J. Ma, Thin solid Films 379 (2000) 89.
[19] P. C. Joshi and S. B. Krupanidhi, J. Appl. Phys. 72, (1992) 5517.
[20] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim, and W. Jo, Appl. Phys. Lett. 74, (1999) 1907.
[21] B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, Appl. Phys. Lett. 75, (1999) 2644.
Chapter 2
[1] Y. Xu, “Ferroelectric Materials and Their Applications”, North- Holland, Netherlands, (1991).
[2] J. F. Scott, “Ferroelectric Memories”, Springer, Germany, (2000).
[3] 李雅明, 固態電子學, 全華科技, (1995).
[4] 李雅明, 吳世全, 陳宏名, 鐵電記憶元件, 電子月刊, 14(9), (1996) 68.
[5] 陳銘森, 清華大學, 博士論文, (1996).
[6] 傅勝利, 陶瓷技術手冊-電子陶瓷, 粉末冶金協會, (1994).
[7] B. Jaffe, W. R. Cook, Jr and H. Jaffe, “Piezoelectric Ceramics”, Academic Press Limited, (1971).
[8] “FRAM Guide Book, Chapter 2”, Fujitsu Web Page <www.fujitsu.com>
[9] P. K. Larsen, R. Cuppens and G. A. C. M. Spierings, Ferroelectric 128, (1992) 265.
[10] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 8, 199.
[11] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 9, 221.
[12] S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, Integrated Ferroelectrics 19 (1999) 159.
[13] K. Amanuma, T. Hase and Y. Miyasaska, Appl. Phys. Lett. 66, (1995) 221.
[14] J. K. Lee, T. K. Song, H. J. Jung, Integrated Ferroelectrics 15, (1997) 115.
[15] K. Uchiyama, K. Arita, Y. Shimada, S. Hayashi, E. Fujii, T. Otsuki, N. Solayappan, V. Joshi and C. A. Paz de Araujo, Integrated Ferroelectrics 30, (2000) 103.
[16] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[17] Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, Appl. Phys. Lett. 78, (2001) 658.
[18] Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Y. N. Wang, Appl. Phys. Lett. 78, (2001) 4175.
[19] B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, N. K. Kim, S. J. Yeom, N. S. Kang and H. G. Yoon, “Highly Reliable 1 Mbit Ferroelectric Memories with Newly Developed BLT Thin Films and Steady Integration Schemes”, IEDM 2001.
[20] G.A. Somolenskii, V.A. Isupov, and A.I. Agranovskaya, Soviet Phys. Solid State 1, (1959) 149.
[21] G.A. Somolenskii, V.A. Isupov, and A.I. Agranovskaya, Soviet Phys. Solid State 3, (1961) 651.
[22] E.C. Subbarao, J. Chem. Phys. 34, (1961) 695.
[23] E.C. Subbarao, J. Am. Ceram. Soc. 45, (1962) 166.
[24] S. Ikegami, and E. Ueda, Jap. J. Appl. Phys. 13, (1974) 1572.
[25] B. Aurivillius, “Mixed Oxide with layer Lattices”, Ark Kemi, 1, (1949) 463.
[26] E.C. Subbarao, J. Phys. Chem. Solids 23, (1962) 665.
[27] O. Auciello, and R. Ramesh, “Laser-ablation deposition and characterization of ferroelectric capacitors for nonvolatile memories”, MRS Bull. 21, (1996) 31.
[28] C. A. Araujo et al., “Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue—has high dielectric constant and low leakage current. US Patent No. 5, 234 (1996) 519.
[29] R. Dat, J. K.Lee, O. Auciello, and A. I. Kingon, Appl. Phys. Lett. 67, (1995) 572.
[30] T. Li et al., Appl. Phys. Lett. 68, (1996) 616.
[31] K. Amanuma, T. Hase, and Y. Miyasak, Appl. Phys. Lett. 66, (1995) 221.
[32] A. D. Rae, J. G. Thompson, R. L. Withers and A. C. Willis, Acta Crystallogr., Sect. B: Struct. Sci. 46, (1990) 474.
[33] S. E. Cummins, and L. E. Cross, Appl. Phys. Lett. 10, (1967) 14.
[34] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39, (1968) 2268.
[35] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, Appl. Phys. Lett. 74, (1999) 1907.
[36] Y. Ding, J. S. Liu, H. X. Qin, J. s. Zhu, and Wang, Appl. Phys. Lett. 78, (2001) 4175.
[37] J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, Appl. Phys. Lett. 80, (2002) 3593.
[38] Ming-Wen Chu, Marcel Ganne, Maria Teresa Caldes, and Luc Brohan, J. Appl. Phys. 91, (2002) 3178.
[39] S. D. Bu, B. S. Kang, B. H. Park, and T. W. Noh, J. Korean Phys. Soc. 36, (2000) L9.
[40] H. N. Lee, and Dietrich Hesse, Appl. Phys. Lett. 80, (2002) 1040.
[41] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gősele, Science 296, (2002) 2006.
[42] N. Ichinose and M. Nomura, Jpn. J. Appl.Phys. 35, (1996) 4960.
[43] W. S. Yang, N. K. Kim, S. J. Yeom, S. Y. Kweon, E. S. Choi, and J. S. Roh, Jpn. J. Appl.Phys. 40, (1996) 5569.
[44] T. Watanabe, H. Funakubo, Minoru Osada, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 80, (2002) 100.
[45] D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, J. Appl. Phys. 88, (2000) 5941.
[46] Dinghua Bao, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, J Phys. D:Appl. Phys. 35, (2002) L1.
[47] C. P. D. Araujo, J. F. Scott and G. W. Taylor, Gordon and Breach Publishers, (1996) 193.
[48] T. Maeder, L. Agalowicz, and P. Muralt, Jpn. J. Appl. Phys. 37, (1998) 2007.
[49] E. A. Kneer, D. P.Birnie, R. D. Schrimpf, J. C. Podlesny, and G. Teowee, Integrated Ferroelectrics 7, (1995) 61.
[50] K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, J. Appl. Phys. 75, (1994) 232.
[51] G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick, and C. Mazure, Integrated Ferroelectrics 17, (1997) 421.
[52] W. Jo, S. M. Cho, H. M. Lee, D. C. Kim, and J. U. Bu, Jpn. J. Appl. Phys. 38, (1999) 2827.
[53] K. S. Hwang, H. A. Park, Byeong Soojung, B. A. Kang, Y. H. Kim, J. Sol-Gel Sci. & Tech. 23, (1998) 67.
[54] Jiwei Zhai and Haydn Chen, Appl. Phys. Lett. 82, (2003) 442.
[55] S. K. Dey and R. Zuleeg, Ferroelectrics 112, (1990) 309.
[56] B. P. Maderic, L. E. Sanchez and S. Y. Wu, Ferroelectrics 116, (1991) 65.
[57] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, Appl. Phys. Lett. 65, (1994) 1018.
[58] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, J. Appl. Phys. 77, (1995) 6695.
[59] C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics 151, (1994) 33.
[60] S. B. Desu and I. K. Yoo, Integrated Ferroelectrics 3, (1993) 365.
[61] L. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc. 310, (1993) 165.
[62] W. Y. Pan, C. F. Yue and B. A. Tuttle, Ceram. Trans. 25, (1992) 385.
[63] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, , M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., Appl. Phys. Lett. 67, (1995) 866.
[64] S. H. Kim, D. J. Kin, J. G. Hong, S. K. Streiffer and A. I. Kingon, J. Mater. Res. 14, (1999) 1371.
[65] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, J. Appl. Phys. 70, (1991) 382.
[66] R. C. Brade and G. S. Ansell, J. Am. Ceram. Soc. 52(4), (1969) 192.
[67] G. Arlt, Ferroelectrics 76, (1987) 451.
[68] K. Tsuzuki, Jpn. J. Appl. Phys. 24, (1985) 126.
[69] K. M. Lee, H.G. An, J. K. Lee, Y. T. Lee, Y. T. Lee, S.W. Lee, S. H. Joo, S. D. Nam, K. S. Park, M.S. Lee, S. O. Park, H. K. Kang and J. T. Moon, Jpn. J. Appl. Phys. 40, (2001) 4979.
[70] J. S. Lee and S. K. Joo, Jpn. J. Appl. Phys. 40, (2001) 229.
[71] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, Appl. Phys. Lett. 75, (1999) 3183.
[72] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wutting, R. Ramesh, O. Auciello and T. Verkatesan, Appl. Phys. Lett. 71, (1997) 3492.
[73] C. Paz de Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films:Synthesis and Basic Properties”, Overseas Publisher Association (1996) 525.
[74] R Ramesh, S. Aggarwal and O. Auciello, Appl. Phys. Lett. 32, (2001) 191.
[75] J. Lee, R Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike and J. T. Evans, Appl. Phys. Lett. 66, (1995) 1337.
[76] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Appl. Phys. Lett. 77, (2000) 127.
[77] Eun Gu Lee, Dirk J. Wouters, Geert Willems and Herman E. Maes, Appl. Phys. Lett. 69, (1996) 1223.
[78] N. Inoue and Y. Hayashi, IEEE Trans Electron dev. 48, (2001) 2266.
[79] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramias and J. T. Evans, Appl. Phys. Lett. 66, (1995) 484.
[80] B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMS”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, (1995) 373.
[81] A. J. Moulson and J. M. Herbert, “Electroceramics-Materials、Properties、Applications”, Chapman and Hall, (1990).
[82] 吳朗, 電子陶瓷-介電, 全欣資訊圖書, (1994).
[83] M. Ohring, “The Materials Science of Thin Films”,Academic Press, (1992).
Chapter4
[1] J. F. Scott and C. A. Paz de Araujo, Science 246 (1989) 1400.
[2] R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, and O. Auciello, Appl. Phys. Lett. 64, 2511 (1995).
[3] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl. Phys. Lett. 66, 239 (1995).
[4] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, (1995) 627.
[5] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[6] S. E. Cummins and L. E. Cross, Appl. Phys. Lett. 10, (1967) 14.
[7] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39, (1968) 2268.
[8] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, Appl. Phys. Lett. 79, (2001) 2791.
[9] H. N. Lee and D. Hesse, Appl. Phys. Lett. 80, (2002) 1040.
[10] Xiaofeng Du and I-Wei Chen, J. Am. Ceram. Soc., 81, (1998) 3253.
[11] A. Kakimi, S. Okamura, S. Ando and T. Tsukamoto, Jpn. J. Appl. Phys. 34, (1995) 5193.
[12] N. Ichinose and M. Nomura, Jpn. J. Appl. Phys. 35, (1996) 4960.
[13] A. Kingon, Nature (London) 401, (1999) 658.
[14] RT-66A Standardized Ferroelectric Test System Operating Manual.
[15] L. B. Kong and J. Ma, Thin solid Films 379 (2000) 89.
[16] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, (1996) 121.
Chapter5
[1] B. Aurivillius, Ark. Kemi 1, (1949) 499.
[2] C. Herovches and P. Lightfoot, J. Solid State Chem. 153, (2000) 66.
[3] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, (1995) 627.
[4] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[5] D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, J. Appl. Phys. 88, (2000) 5941.
[6] U. Chon, G. C. Yi, and H. M. Jang, Appl. Phys. Lett. 78, (2001) 658.
[7] D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, J. Appl. Phys. 80, (1996) 1682.
[8] P. C. Joshi and S. B. Krupanidhi, J. Appl. Phys. 72, (1992) 5517.
[9] Č. Jovalekić, M. Pavlović, P. Osmokrović, and Lj. Atanasoska, Appl. Phys. Lett. 72, (1998) 1051.
[10] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim, and W. Jo, Appl. Phys. Lett. 74, (1999) 1907.
[11] B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, Appl. Phys. Lett. 75, (1999) 2644.
[12] D. A. Shirley, Ohys. Rev. B5 (1972) 4709.
[13] M. Qvarford, S. Sőderholm, G. Chiaia, R. Nyholm, J. N. Andersen, I. Lindau, U. O. Karlsson, L. Leonyuk, A. Nilsson, and Mårtensson, Phys. Rev. B 53, (1996) R14753.
[14] A. Balzarotti, M. De Crescenzi, N. Motta, F. Patella, A. Sgarlata, P. Paroli, G. Balestrino, and M. Marinelli, Phy. Rev. B 43, (1991) 11500.
[15] C. R. Brundle, E. Silverman, and R. J. Madix, J. Vac. Sci. Technol. 16, (1979) 474.
[16] V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, and A. Goswami, J. Electron Spectrosc. Relat. Phenom. 25, (1982) 181.
[17] C. Hinnen, C. N. van Huong, and P. Marcus, J. Electron Spectrosc. Relat. Phenom. 73, (1995) 293.
[18] J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J. M. Bassat, V. Rives, and L. Minchev, J. Chem. Soc., Faraday Trans. 90, (1994) 1987.
[19] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of XPS (Perkin-Elmer, Minneapolis, 1979).
[20] W. E. Morgan, W. J. Stec, and J. R. van Wazer, Inorg. Chem. 12, (1973) 953.
[22] G. K. Wertheim, R. L. Cohen, A. Rosencwaig and H. J. Guggenheim in “Electron Spectroscopy”, ed. D. A. Shirley, North Holland, Amsterdam, (1972).
[22] Ming-Wen Chu, Marcel Ganne, Maria Teresa Caldes, and Luc Brohan, J. Appl. Phys. 91, (2002) 3178.
Chapter6
[1] S. E. Cummins and L. E. Cross, Appl. Phys. Lett. 10, (1967) 14.
[2] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39, (1968) 2268.
[3] D. Wu, A. Li, T. Zhu, Z. Li, Z. Liu and N. Ming, J. Mater. Res. 16, (2001) 1325.
[4] J. Celinska, V. Joshi, S. Narayan, L. D. Macmillan and C. A Paz De Araujo, Integr. Ferroelectr. 30, (2001) 1.
[5] T. Watanabe, A. Saiki, K. Saito and H. Funakubo, J. Appl. Phys. 89, (2001) 3934.
[6] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[7] Uong Chon, Ki-Bum Kim, Hyun M. Jang, and Gyu-Chul Yi, Appl. Phys. Lett. 79, (2001) 3137.
[8] H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, T. Watanabe and H. Funakubo, Jpn. J. Appl. Phys. 41, (2002) 6820.
[9] RT-66A Standardized Ferroelectric Test System Operating Manual.
[10] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, (1996) 121.
全文公開日期 本全文未授權公開 (校內網路)