簡易檢索 / 詳目顯示

研究生: 陳逸新
Chen, Yi-Hsin
論文名稱: 半導體研發設計階段以WAT參數建構系統化黃金晶方抽樣分析模型
A Systematic Golden Die Sampling Analysis Model with WAT Parameters at Semiconductor R&D Stage
指導教授: 陳飛龍
劉淑範
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 黃金晶方晶圓允收測試主成份分析Fuzzy ART資料抽樣向量內積
外文關鍵詞: Golden Die, Wafer Acceptance Test, PCA, Fuzzy ART, Data Sampling, Dot Product
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從台灣發展高科技產業以來,經過數十年的發展,已經成為台灣高產值的產業之一,特別是在半導體產業上的成就已成為各國學習與競爭的目標。由於半導體生產的高度複雜以及對於時間上的急切性,迫使晶圓廠必須透過各種分析以及製程監控等方法來加速晶圓的生產以維持市場優勢並提升顧客以及公司的競爭力,特別是在新產品或製程研發階段,在此階段由於研發人員利用WAT測試晶圓來測試顧客所提供的電路設計,在無歷史資料可參考的情況下,僅能透過全測的方式收集大量的資料並透過研發人員的經驗以及工程背景知識來判斷,找出較為符合目標的晶方,而龐大的數據資料往往耗費研發人員大量的時間並造成不同人員對於黃金晶方判斷上的差異,因此本研究建構半導體研發階段WAT參數之黃金晶方抽樣分析,經由資料轉換萃取、模糊自我適應共振理論網路(Fuzzy ART)、向量內積計算相似性這幾個流程,經由晶方的群聚分析、相似性分析後決定出具代表性的抽樣晶方,提供給研發人員找出黃金晶方以及群聚,利用黃金晶方群聚的WAT資料回饋,以提升製程分析的效率。經由半導體廠所提供之實證資料的分析,本研究能有效的將參數資料分成適當的群聚,接著透過相似性分析,決定各個群聚代表的晶方,做為資料分析的抽樣目標,以找出接近黃金晶方的目標晶方和其所在的群聚,提供該階段產線研發人員未來晶圓製程分析的參考依據。


    Semiconductor industry has one of the most productive industries in Taiwan and been the role model for other countries to be competitive in this field. Due to the complex manufactory processes and limited time to meet market demands maintain high yield, silicon wafer FAB must use variable analyses and process monitering methods to improve the process efficiency, especially at the stage of new product development, engineer have to test circuit design for customers with wafer acceptance test (WAT). However, it’s time-consuming to collect data so huge amount of for determining golden die and sometimes mistakes could be made due to the different diagnose methods and experiences form engineers. This paper is to develop an approach for WAT parameter sampling analysis of golden die through data extraction and transformation at semiconductor R&D stage, Fuzzy ART, and similarity analysis. The most representative sampling die can be determined through die cluster and similarity analysis and then it can be used for engineers to find golden die corresponding with experiments on those date provided by semiconductor companies, the presented approach classifieds data into suitable clusters and the representative die for each cluster can then be selected via similarity analysis. Therefore, we can determine the die closest to the golden die and the group. This may provide engineers with information useful for that stage manufacturing to which it belongs to process analysis in the future.

    摘要 I ABSTRACT II 致謝詞 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構 4 第二章 文獻探討 6 2.1半導體相關製程介紹 6 2.2半導體良率分析 17 2.3資料探勘 24 2.3.1資料處裡技術 24 2.3.2資料探勘技術 28 2.3.3 類神經網路 31 2.3.4 類神經網路模式 33 2.4抽樣方法 34 第三章 半導體研發設計階段WAT參數之抽樣設計 38 3.1 問題定義 38 3.2 研究架構與流程 42 3.3研發階段WAT參數群聚抽樣分析 44 3.3.1 資料前處裡 44 3.3.2模糊自適應共振理論網路群聚分析 50 3.3.3相似性分數抽樣分析 57 3.3.4抽樣晶方分析 58 第四章 系統實作與實證分析 59 4.1資料處理及分類系統工具 59 4.2資料實證分析 61 4.3分析結果討論 68 4.4不同群聚分析及黃金晶方搜尋方法比較 84 第五章 結論 86 5.1結論 86 5.2未來研究發展方向 87 參考文獻 88

    林寅智,1998,「以工程資料為基礎之半導體故障分析系統」,國立清華大學工業工程與工程管理研究所碩士論文。

    李偉傑,1996,「半導體之工程資料分析與診斷系統」,國立清華大學工業工程與工程管理研究所碩士論文。

    吳鴻志,2002,「運用關連式法則分析異常WAT良率之機台組合」,國立中正大學會計學研究所碩士論文。

    許文豪,2000,「圖形辨識概述與實作」,國立清華大學資訊系統與應用研究所碩士論文。

    游淑敏,2008,「以WAT 參數資料建構半導體研發設計階段黃金晶方群聚分析」,國立清華大學工業工程與工程管理研究所碩士論文。

    陳麗伃,2004,「以資料挖礦為基礎之半導體測試性WAT資料分析診斷」,國立清華大學工業工程與工程管理研究所碩士論文。

    陳秋雲,1998, <VLSI製造技術>,全華圖書公司

    葉怡成,1999,<類神經網路模式應用與實作>,儒林圖書有限公司。

    黃靜文,2005,「維度縮減應用於蛋白質質譜儀資料」,國立政治大學統計學研究所碩士論文。

    張光佑,2005,「探討特徵萃取要素於小樣本分類問題」,國立台中教育大學教育測驗統計研究所碩士論文。

    謝祥文,2004,「區域分割為基礎之晶圓缺陷圖樣辨識演算法」,國立清華大學工業工程與工程管理學系研究所博士論文。

    劉淑範,1997,「以工程資料為基礎之半導體良率提升分析系統」,國立清華大學工業工程與工程管理學系研究所碩士論文。

    簡禎富、施義成、林振銘、陳瑞坤,2005,<半導體製造技術與管理>,國立清華大學出版社。
    魏連均,2006,「應用類神經網路建構晶圓圖故障圖樣辨識模式」,國立清華大學工業工程與工程管理研究所碩士論文。

    Almudena, F., Alfonso, L., Sergio, C., David, O., David, A., James, L., Murray, H., 1999. “A Mathematical Model for Defect Impact Based on In-Line vs Test Data Correlations” IEEElSEMl Advanced Semiconductor Manufacturing Conference

    Allan, Y. W., 1996. “A Statistical Parametric and Probe Yield Analysis Methodology” Defect and Fault Tolerance in VLSI Systems. Proceedings., IEEE International Symposium on 131-139

    Alex, A. F., and H. L. Simon, 1998. “Mining Very Large Databases With Parallel Processing” Kluwer Academic, Bosten

    Alfredo, W., Michael, A. A., Amanda, A., 2002. “The Neural Simulation Language: A System for Brain Modeling” The MIT Press; illustrated edition edition

    Bose, B. K., 2007. “Neural network applications in power electronics and motor drives: An introduction and perspective” IEEE Transactions on Industrial Electronics, 54, 14-33.

    Berry, M., and Gordon. L., 1997. “Data Mining Techniques for Marketing, Sales and Customer Support” John Wiley and Son, New York.

    Chien, C.F., Lin, T.H., Peng, C.Y., and Hsu, S.C., 2001. "Developing Data Mining Framework and Methods for Diagnosing Semiconductor Manufacturing Defects and an Empirical Study of Wafer Acceptance Test Data in A wafer FAB," Journal of the Chinese Institute of Industrial Engineers, 18, 37-48

    Chien, W.T.K., Shunwang Chiang Summer Tseng Huang, C.H.J. Yang, K., Wang, W., Zhou, J., 2003. “Practical WLRC methodology & applications in a wafer foundry” Reliability Physics Symposium Proceedings,. 41st Annual. IEEE International 395- 401

    Cook, R.D. and Weisberg, S., 1994. “On the interpretation of regression plots” Journal of the American Statistical Association ISSN 0162-1459 CODEN
    JSTNAL , vol. 89, n425, 177-189
    Carpenter, G.A., & Grossberg, S., 2003. “Adaptive Resonance Theory” In Michael A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, Second Edition 87-90.

    Carpenter, G.A., & Grossberg, S., 1987. “ART 2: Self-organization of stable category recognition codes for analog input patterns” Applied Optics, 26(23), 4919-4930)

    Carpenter, G.A., Grossberg, S., & Rosen, D.B., 1991. “ART 2-A: An adaptive resonance algorithm for rapid category learning and recognition” Neural Networks (Publication), 4, 493-504

    Carpenter, G.A., & Grossberg, S., 1990. “ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures” Neural Networks (Publication), 3, 129-152

    Carpenter, G.A., Grossberg, S., & Rosen, D.B., 1991. “Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system” Neural Network (Publication), 4, 759-771

    Du, Q., 2007. “Modified fisher's linear discriminant analysis for hyperspectral imagery” IEEE Geoscience and Remote Sensing Letters, 4, 503-507.

    El-Kareh, B., Ghatalia, A., Satya, A.V.S., Semicond. R&D Center, IBM Corp., Hopewell Junction, NY., 1995. “Yield management in microelectronic manufacturing” IEEE Semiconductor Conference, 58-63.

    Fan, C.M., Student Member, Guo, R.S., Chang, S.C., Wei, C.S., 2000. “SHEWMA: An End-of-Line SPC Scheme Using Wafer Acceptance Test Data” IEEE Transactions on Semiconductor Manufacturing, VOL. 13, NO. 3, 344-358

    Fan, C.M., Guo, R.S., Chen, A., Hsu, K.C., Wei, C.S., 2001. “Data Mining and Fault Diagnosis based on Wafer Acceptance Test Data” IEEE International Semiconductor Manufacturing Symposium, 171-174

    Fukunaga, K., 1990. “Introduction to statistical pattern recognition” San Diego: Academic Press Inc.

    Fayyad, U., 1997. “Data mining and knowledge discovery in dataBase: Implication for scientific databases” Scientific and Statistical Database Management, 2-11.

    Guido, D., Teuvo, K., 1998. “Visual Exploration in Finance with Self-Organizing Maps” Springer; 1 edition

    Gordon, E. M., 1975. “Co-founder Intel Corporation Progress In Digital Integrated Electronics” IEEE Text Speech

    Grossberg, S. 1987. “Competitive learning: From interactive activation to adaptive resonance” Cognitive Science (Publication), 11, 23-63

    Georgiopoulos, M., Dagher, I., Heileman, G. L., and Bebis, G., 1999. “Properties of learning of a Fuzzy ART Variant” Neural Networks, vol. 12, 837-850.

    Hughes, G.F., 1968. “On the mean accuracy of statistical pattern recognition” IEEE Trans. Inform. Theory, vol. 14, pp. 55 - 63, Jan.

    Han, J., and Kamber, M., 2000. “Data mining: Concepts and techniques” Morgan Kaufmann; 1st edition

    James, D.P., M. Michael, D.D., and Peter, B.G., 2000. “Silicon VLSI Technology” Prentice Hall

    Kohonen, T., 1988. “An introduction to neural computing” Neural Networks, 1(1), 3-16.

    Laurene, F., 1994. “Fundamentals of Neural Networks” Prentice-Hall International 102

    Li, K.C., 1991. “Sliced inverse regression for dimension reduction,” Journal of the American Statistical Association, 86, 316-342.

    Li, K.C., 1992. “On principal hessian directions for data visualization and dimension reduction: Another application of Stein’s Lemma” Journal of the American Statistical Association, 87, 1025-1039.

    Lee, J.H., Yu, S.J., and Park, S.C., 2001. “Design of intelligent data sampling methodology based on data mining” IEEE Transactions on Robotics and Automation, 17(5), 637-649.
    Lee J.H., You S.J., Park S.C., 2001. “A new intelligent SOFM-based sampling plan for advanced process control” Expert Systems with Applications, Vol. 20, No. 2(19), 133-151.

    Lee, J.H., 2002. “Artifical intelligence-based sampling planning system for dynamic manufacturing process” Expert systems with applications 22, 117-133.

    Mehmed, K., 2003. “Data Mining: Concepts, Models, Methods, and Algorithms” John Wiley & Sons.

    Makoto, O., Kenji, W., 2002. “Accuracy of Yield Impact Calculation Based on kill Ratio” Advanced Semiconductor Manufacturing IEEE/SEMI Conference and Workshop

    Nag, P.K., Maly, W., and Jocobs, H.J., 1997. “Simulation of yield/cost learning curves with Y4” IEEE Transactions on Semiconductor Manufacturing, 10(2), 256-266.

    Narendra, P.M. and Fukunage, K., 1997. “A branch and bound algorithm for feature subset selection” IEEE Trans. Computers, 6(9), 917-922.

    Oh, I.S., Lee, J.S., and Moon, BR., 2004. “Hybrid Genetic Algorithms for Feature Selection” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no.11.

    Pudil, P., Novovicova, J., and Kittler, J., 1994. “Floating search methods in feature selection with nonmonotoniccriterion functions” Pattern Recognition,Vol.2 - Conference B: Computer Vision & Image Processing., Proceedings of the 12th IAPR International. Conference.

    Pedhazur, E., & Schmelkin, L. 1991. “Measurement design and analysis: An integrated approach” Lawrence Erlbaum.

    Roberto, B., 1994. “Using mutual information for selecting features in supervised neural net learning” IEEE Transactions on Neural Networks, 5, 337-550.

    Sinha, S., Su, Q., Wen, L., Lee, F., Chiang, C., Cheng, Y.K., Lin, J.L., and Harn, Y.C., 2008. “A New Flexible Algorithm for Random Yield Improvement” IEEE)
    Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P., 2001. “A fast automaton-based method for detecting anomalous program behaviors” IEEE Symposium on Security and Privacy, Oakland, California, 144- 155.

    Suresh, G. and Sahu, S., 1993, “Multiobjective facility layout using simulatedannealing,” International Journal of Production Economics, vol. 32, 239-254.

    Thuraisingham, B., 2000. “A primer for understanding and applying data mining” IT Professional 28-31

    Sammy, K., 1999. “Compound Semiconductor Devices for Space Applications” Microelectronics Reliability, Vol. 39, No. 12( 17) ,1723-1736.

    Witten, H.I., and Frank, E., 2005. “Data mining: Practical machine learning tools techniques” Morgan Kaufmann, 2 edition.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE