研究生: |
王中信 Wang, Chung-Hsin |
---|---|
論文名稱: |
多功能超音波對比劑於腫瘤診斷與治療 Multifunctional Ultrasound Contrast Agents for Tumor Theranosis |
指導教授: |
葉秩光
Yeh, Chih-Kuang |
口試委員: |
邱信程
江啟勳 陳志成 劉浩澧 葉秩光 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 147 |
中文關鍵詞: | 標靶微氣泡 、適合體修飾 、粒徑控制 、相轉變液滴 、超音波分子生物影像 、超音波診斷治療 |
外文關鍵詞: | targeted microbubbles, aptamer conjugation, size control, acoustic phase-change droplets, ultrasound molecular imaging, ultrasound theranosis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究超音波對比劑於醫用超音波影像上的整合應用,同時包含了診斷與治療的面向。整體可以分為兩大主題:第一主題主要陳述於第二章,以研製一般對比劑與探討選用材料對其物化性質的影響為主軸。而第二部分則針對臨床應用進行加值技術的開發,其中包括了分子影像、藥物輸送與多模式影像等延伸應用,並陳述於三、四兩章。
第二章中,我們嘗試以調控對比劑製成材料的比例來控制氣泡粒徑的大小並用以增進微氣泡於特定聲頻下的振動響應。系統的研究證實了此一技術可在0.93 到2.86 微米的區間內調控氣泡的平均粒徑,並用作最佳化微氣泡造影穩定度的方式。而第三章,我們針對超音波分子影像的應用開發了一個共價鍵結的微氣泡修飾系統並進一步搭配了新一代的適合體標靶分子以提供對腫瘤較高的專一性與吸附力。另外,也針對流程所需時間與過程中可能的氣泡衰亡進行技術改良。相較於傳統的製程,使用此一優化的製程將能提高標的分子的修飾效率1.7倍。
最後在第四章的部分,我們為了將診斷與治療加以整合於超音波上,著手開發了新一代的超音波影像對比劑,相轉變液滴。在研究的過程中,前後結合適合體標的分子、小紅莓抗癌藥物以及超順磁奈米鐵粒子於同一液滴載體上。利用相轉變液滴於高能量聲場下能被氣化進而產生穴蝕效應與釋放包覆藥物的特性,提出能同時提供瞬時物理性治療與長效化學性治療的複合式腫瘤治療手段。
The primary goal of this dissertation is to apply ultrasound contrast agents (UCAs) to the integrated applications of medical ultrasound imaging. The main topics can be divided to two certain parts. The first part which mainly described in chapter 2 includes the investigations on the fabrication of UCA and the influence of shell compositions on the physic-chemical properties of these agents. The second part focused on the developments of value-added techniques including ultrasound molecular imaging, drug delivery, and bi-model imaging applications that described in chapter 3 and 4.
In chapter 2, we described a size controlling technique that based on regulating the compositions of shell materials for improving the oscillation response of bubbles at specific ultrasound frequency. The systemic results indicate that we could use the regulation technique to control the mean sizes of bubbles from 0.93 to 2.86 μm and even to optimize the imaging stability of fabricated bubbles. In chapter 3, we developed a covalently conjugated bubble system coupling with the new class of targeting ligands, aptamers, for providing a high specific affinity for ultrasound targeting studies. Further technical improvements were also made to reduce the required time and avoid the degradation of bubbles during conjugation process. With the optimized process, the conjugation efficiency of targeted bubbles was up to 1.7-fold higher compared with traditional processes.
In chapter 4, we turned to the development of the new generation UCA, acoustic phase-change droplets, in the cause of integrating the diagnosis and therapy in one modality. Several ingredients were associated with the acoustic droplets, such as aptamer molecules, anti-cancer drug (doxorubicin) and superparamagnetic iron oxide nanoparticles. With ultrasound insonation, these droplets underwent an instant phase transition into gas bubbles called acoustic droplet vaporization. This instant vaporization process occurred with inertial cavitation while liberating the encapsulated therapeutic drugs in the same time. By utilizing these properties, we purposed a hybrid tumor treatment strategy that integrated both the instant mechanical and long-term chemical therapeutic effects.
[1] V. D. Awasthi, D. Garcia, B. A. Goins, and W. T. Phillips, "Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits," International Journal of Pharmaceutics, vol. 253, pp. 121-132, Mar 6 2003.
[2] G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, and E. Picano, "In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound," Cardiovasc Res, vol. 58, pp. 156-61, Apr 1 2003.
[3] E. A. Bayer, M. Wilchek, and E. Skutelsky, "Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex," FEBS Letters, vol. 68, pp. 240-4, Oct 1 1976.
[4] K. Bjerknes, J. U. Braenden, J. E. Braenden, R. Skurtveit, G. Smistad, and I. Agerkvist, "Air-filled polymeric microcapsules from emulsions containing different organic phases," Journal of Microencapsulation, vol. 18, pp. 159-171, Mar 2001.
[5] M. Blank and V. K. La Mer, "The energy barrier for monolayer penetration," in Retardation of Evaporation by Monolayers, V. K. La Mer, Ed., ed New York: Academic Press, 1962, pp. 59-66.
[6] M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener, "Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen," Journal of Biological Chemistry vol. 276, pp. 16464-8, May 11 2001.
[7] S. H. Bloch, M. Wan, P. A. Dayton, and K. W. Ferrara, "Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents," Applied Physics Letters, vol. 84, pp. 631-633, Jan 26 2004.
[8] A. A. Bogdanov, A. L. Klibanov, and V. P. Torchilin, "Protein Immobilization on the Surface of Liposomes Via Carbodiimide Activation in the Presence of N-Hydroxysulfosuccinimide," FEBS Letters, vol. 231, pp. 381-384, Apr 25 1988.
[9] E. J. Boote, "AAPM/RSNA physics tutorial for residents: Topics in US - Doppler US techniques: Concepts of blood flow detection and flow dynamics," Radiographics, vol. 23, pp. 1315-1327, Sep-Oct 2003.
[10] M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, and K. W. Ferrara, "DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles," Langmuir, vol. 23, pp. 9401-9408, Aug 28 2007.
[11] M. A. Borden, D. E. Kruse, C. F. Caskey, S. K. Zhao, P. A. Dayton, and K. W. Ferrara, "Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, pp. 1992-2002, Nov 2005.
[12] M. A. Borden and M. L. Longo, "Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length," Langmuir, vol. 18, pp. 9225-9233, Nov 26 2002.
[13] M. A. Borden and M. L. Longo, "Oxygen permeability of fully condensed lipid monolayers," Journal of Physical Chemistry B, vol. 108, pp. 6009-6016, May 13 2004.
[14] M. A. Borden, G. Pu, G. J. Runner, and M. L. Longo, "Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles," Colloids and Surfaces B-Biointerfaces, vol. 35, pp. 209-223, Jun 1 2004b.
[15] M. A. Bos and T. Nylander, "Interaction between beta-lactoglobulin and phospholipids at the air/water interface," Langmuir, vol. 12, pp. 2791-2797, May 29 1996.
[16] P. N. Burns, D. H. Simpson, and M. A. Averkiou, "Nonlinear imaging," Ultrasound in Medicine and Biology, vol. 26, pp. S19-S22, 2000.
[17] P. N. Burns, S. R. Wilson, and D. H. Simpson, "Pulse inversion imaging of liver blood flow - Improved method for characterizing focal masses with microbubble contrast," Investigative Radiology, vol. 35, pp. 58-71, Jan 2000.
[18] F. Cavalieri, A. El Hamassi, E. Chiessi, and G. Paradossi, "Stable polymeric microballoons as multifunctional device for biomedical uses: Synthesis and characterization," Langmuir, vol. 21, pp. 8758-8764, Sep 13 2005.
[19] C. C. Chen and M. A. Borden, "Ligand Conjugation to Bimodal Poly(ethylene glycol) Brush Layers on Microbubbles," Langmuir, vol. 26, pp. 13183-13194, Aug 17 2010.
[20] C. C. Chen and M. A. Borden, "The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces," Biomaterials, vol. 32, pp. 6579-6587, Sep 2011.
[21] S. Y. Chen, J. H. Ding, R. Bekeredjian, B. Z. Yang, R. V. Shohet, S. A. Johnston, H. E. Hohmeier, C. B. Newgard, and P. A. Grayburn, "Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 8469-8474, May 30 2006.
[22] C. T. Chin and P. N. Burns, "Predicting the acoustic response of a microbubble population for contrast imaging in medical ultrasound," Ultrasound in Medicine and Biology, vol. 26, pp. 1293-1300, Oct 2000.
[23] J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, "Mechanisms of contrast agent destruction," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 48, pp. 232-248, Jan 2001.
[24] J. E. Chomas, P. Dayton, D. May, and K. Ferrara, "Threshold of fragmentation for ultrasonic contrast agents," Journal of Biomedical Optics, vol. 6, pp. 141-150, Apr 2001.
[25] S. Choudhry, B. Gorman, J. W. Charboneau, D. J. Tradup, R. J. Beck, J. M. Kofler, and D. S. Groth, "Comparison of tissue harmonic imaging with conventional US in abdominal disease," Radiographics, vol. 20, pp. 1127-1135, Jul-Aug 2000.
[26] C. Christiansen, H. Kryvi, P. C. Sontum, and T. Skotland, "Physical and Biochemical-Characterization of Albunex(Tm), a New Ultrasound Contrast Agent Consisting of Air-Filled Albumin Microspheres Suspended in a Solution of Human Albumin," Biotechnology and Applied Biochemistry, vol. 19, pp. 307-320, Jun 1994.
[27] I. Ciani, D. P. Burt, S. Daniele, and P. R. Unwin, "Effect of surface pressure on oxygen transfer across molecular monolayers at the air/water interface: Scanning electrochemical microscopy investigations using a mercury hemispherical microelectrode probe," Journal of Physical Chemistry B, vol. 108, pp. 3801-3809, Mar 25 2004.
[28] M. C. Cochran, J. Eisenbrey, R. O. Ouma, M. Soulen, and M. A. Wheatley, "Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery," International Journal of Pharmaceutics, vol. 414, pp. 161-170, Jul 29 2011.
[29] D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold, "A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment," Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 15416-21, Dec 23 2003.
[30] P. A. Dayton and K. W. Ferrara, "Targeted imaging using ultrasound," Journal of Magnetic Resonance Imaging, vol. 16, pp. 362-377, Oct 2002.
[31] P. A. Dayton, D. Pearson, J. Clark, S. Simon, P. A. Schumann, R. Zutshi, T. O. Matsunaga, and K. W. Ferrara, "Ultrasonic Analysis of Peptide-and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of alpha(V)beta(3)-Expressing Cells," Molecular Imaging, vol. 3, pp. 125-134, Apr 2004.
[32] N. de Jong, A. Bouakaz, and F. J. Ten Cate, "Contrast harmonic imaging," Ultrasonics, vol. 40, pp. 567-573, May 2002.
[33] N. de Jong, R. Cornet, and C. T. Lancee, "Higher Harmonics of Vibrating Gas-Filled Microspheres .1. Simulations," Ultrasonics, vol. 32, pp. 447-453, Nov 1994.
[34] N. de Jong, L. Hoff, T. Skotland, and N. Bom, "Absorption and Scatter of Encapsulated Gas Filled Microspheres - Theoretical Considerations and Some Measurements," Ultrasonics, vol. 30, pp. 95-103, Mar 1992.
[35] A. Della Martina, E. Allemann, T. Bettinger, P. Bussat, A. Lassus, S. Pochon, and M. Schneider, "Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa - Characterization and in vitro testing," European Journal of Pharmaceutics and Biopharmaceutics, vol. 68, pp. 555-564, Mar 2008.
[36] R. Diaz-Lopez, N. Tsapis, and E. Fattal, "Liquid Perfluorocarbons as Contrast Agents for Ultrasonography and F-19-MRI," Pharmaceutical Research, vol. 27, pp. 1-16, Jan 2010.
[37] P. A. Dijkmans, L. J. Juffermans, R. J. Musters, A. van Wamel, F. J. ten Cate, W. van Gilst, C. A. Visser, N. de Jong, and O. Kamp, "Microbubbles and ultrasound: from diagnosis to therapy," European Journal of Echocardiography, vol. 5, pp. 245-56, Aug 2004.
[38] P. B. Duncan and D. Needham, "Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution," Langmuir, vol. 20, pp. 2567-2578, Mar 30 2004.
[39] D. B. Ellegala, H. L. Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, "Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta(3)," Circulation, vol. 108, pp. 336-341, Jul 22 2003.
[40] P. S. Epstein and M. S. Plesset, "On the Stability of Gas Bubbles in Liquid-Gas Solutions," Journal of Chemical Physics, vol. 18, pp. 1505-1509, 1950.
[41] M. L. Fabiilli, K. J. Haworth, N. H. Fakhri, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "The Role of Inertial Cavitation in Acoustic Droplet Vaporization," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 56, pp. 1006-1017, May 2009.
[42] M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Delivery of Chlorambucil Using an Acoustically-Triggered Perfluoropentane Emulsion," Ultrasound in Medicine and Biology, vol. 36, pp. 1364-1375, Aug 2010.
[43] C. H. Fan, H. L. Liu, C. Y. Huang, Y. J. Ma, T. C. Yen, and C. K. Yeh, "Detection of Intracerebral Hemorrhage and Transient Blood-Supply Shortage in Focused-Ultrasound-Induced Blood-Brain Barrier Disruption by Ultrasound Imaging," Ultrasound in Medicine and Biology, May 12 2012.
[44] J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, "A study of the formulation design of acoustically active lipospheres as carriers for drug delivery," European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, pp. 67-75, Aug 2007.
[45] U. Farook, H. B. Zhang, M. J. Edirisinghe, E. Stride, and N. Saffari, "Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization," Medical Engineering & Physics, vol. 29, pp. 749-754, Sep 2007.
[46] S. B. Feinstein, F. J. Ten Cate, W. Zwehl, K. Ong, G. Maurer, C. Tei, P. M. Shah, S. Meerbaum, and E. Corday, "Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents," Journal of the American College of Cardiology, vol. 3, pp. 14-20, Jan 1984.
[47] S. B. Feinstein, F. J. Tencate, W. Zwehl, K. Ong, G. Maurer, C. Tei, P. M. Shah, S. Meerbaum, and E. Corday, "Two-Dimensional Contrast Echocardiography .1. Invitro Development and Quantitative-Analysis of Echo Contrast Agents," Journal of the American College of Cardiology, vol. 3, pp. 14-20, 1984.
[48] K. Ferrara, R. Pollard, and M. Borden, "Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery," Annual Review of Biomedical Engineering, vol. 9, pp. 415-447, 2007.
[49] K. W. Ferrara, "Driving delivery vehicles with ultrasound," Advanced Drug Delivery Reviews, vol. 60, pp. 1097-1102, Jun 30 2008.
[50] J. A. Feshitan, C. C. Chen, J. J. Kwan, and M. A. Borden, "Microbubble size isolation by differential centrifugation," Journal of Colloid and Interface Science, vol. 329, pp. 316-24, Jan 15 2009.
[51] F. Forsberg, J. B. Liu, D. A. Merton, N. M. Rawool, and B. B. Goldberg, "Parenchymal Enhancement and Tumor Visualization Using a New Sonographic Contrast Agent," Journal of Ultrasound in Medicine, vol. 14, pp. 949-957, Dec 1995.
[52] V. Frenkel, "Ultrasound mediated delivery of drugs and genes to solid tumors," Advanced Drug Delivery Reviews, vol. 60, pp. 1193-1208, Jun 30 2008.
[53] B. Geers, I. Lentacker, N. N. Sanders, J. Demeester, S. Meairs, and S. C. De Smedt, "Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery," Journal of Controlled Release, vol. 152, pp. 249-256, Jun 10 2011.
[54] D. E. Goertz, N. de Jong, and A. F. van der Steen, "Attenuation and size distribution measurements of Definity and manipulated Definity populations," Ultrasound in Medicine and Biology, vol. 33, pp. 1376-88, Sep 2007.
[55] D. E. Goertz, N. de Jong, and A. F. W. van der Steen, "Attenuation and size distribution measurements of definity (TM) and manipulated definity (TM) populations," Ultrasound in Medicine and Biology, vol. 33, pp. 1376-1388, Sep 2007.
[56] R. Gramiak and P. M. Shah, "Echocardiography of the aortic root," Investigative Radiology, vol. 3, pp. 356-66, Sep-Oct 1968.
[57] J. Hancock, H. Dittrich, D. E. Jewitt, and M. J. Monaghan, "Evaluation of myocardial, hepatic, and renal perfusion in a variety of clinical conditions using an intravenous ultrasound contrast agent (Optison) and second harmonic imaging," Heart, vol. 81, pp. 636-641, Jun 1999.
[58] N. Hashiya, M. Aoki, K. Tachibana, Y. Taniyama, K. Yamasaki, K. Hiraoka, H. Makino, K. Yasufumi, T. Ogihara, and R. Morishita, "Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model," Biochemical and Biophysical Research Communications, vol. 317, pp. 508-514, Apr 30 2004.
[59] K. J. Haworth and O. D. Kripfgans, "Initial Growth and Coalescence of Acoustically Vaporized Perfluorocarbon Microdroplets," 2008 Ieee Ultrasonics Symposium, Vols 1-4 and Appendix, pp. 623-626, 2008.
[60] W. He, F. Yang, Y. H. Wu, S. Wen, P. Chen, Y. Zhang, and N. Gu, "Microbubbles with surface coated by superparamagnetic iron oxide nanoparticles," Materials Letters, vol. 68, pp. 64-67, Feb 1 2012.
[61] S. Hernot and A. L. Klibanov, "Microbubbles in ultrasound-triggered drug and gene delivery," Advanced Drug Delivery Reviews, vol. 60, pp. 1153-66, Jun 30 2008.
[62] J. W. Huang, J. S. Xu, and R. X. Xu, "Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins," Biomaterials, vol. 31, pp. 1278-1286, Feb 2010.
[63] Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, "Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods," Langmuir, vol. 24, pp. 11860-11865, Oct 21 2008.
[64] G. A. Husseini, M. A. D. de la Rosa, E. S. Richardson, D. A. Christensen, and W. G. Pitt, "The role of cavitation in acoustically activated drug delivery," Journal of Controlled Release, vol. 107, pp. 253-261, Oct 3 2005.
[65] A. R. Jayaweera, N. Edwards, W. P. Glasheen, F. S. Villanueva, R. D. Abbott, and S. Kaul, "In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells," Circulation Research, vol. 74, pp. 1157-65, Jun 1994.
[66] J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: A Signal Processing approach. Great Britain: Cambridge University Press, 1996.
[67] A. Kabalnov, D. Klein, T. Pelura, E. Schutt, and J. Weers, "Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory," Ultrasound in Medicine and Biology, vol. 24, pp. 739-749, Jun 1998.
[68] J. A. Kang, X. L. Wu, Z. G. Wang, H. T. Ran, C. S. Xu, J. F. Wu, Z. X. Wang, and Y. Zhang, "Antitumor Effect of Docetaxel-Loaded Lipid Microbubbles Combined With Ultrasound-Targeted Microbubble Activation on VX2 Rabbit Liver Tumors," Journal of Ultrasound in Medicine, vol. 29, pp. 61-70, Jan 2010.
[69] S. T. Kang and C. K. Yeh, "A maleimide-based in-vitro model for ultrasound targeted imaging," Ultrasonics Sonochemistry, vol. 18, pp. 327-333, Jan 2011.
[70] Y. L. Kao, P. L. G. Chong, and C. H. Huang, "Dynamic Motions of 1,6-Diphenyl-1,3,5-Hexatriene in Interdigitated C(18)-C(10)Phosphatidylcholine Bilayers," Biophysical Journal, vol. 58, pp. 947-956, Oct 1990.
[71] K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, "Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 44, pp. 4548-4552, Jun 2005.
[72] M. Kaya, S. Feingold, K. Hettiarachchi, A. P. Lee, and P. A. Dayton, "Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing," Bubble Science Engineering and Technology, vol. 2, pp. 33-40, Dec 2010.
[73] N. N. Kipshidze, T. R. Porter, G. Dangas, H. Yazdi, F. Tio, F. Xie, D. Hellinga, R. Wolfram, R. Seabron, R. Waksman, A. Abizaid, G. Roubin, S. Iyer, A. Colombo, M. B. Leon, J. W. Moses, and P. Iversen, "Novel site-specific systemic delivery of Rapamycin with perfluorobutane gas microbubble carrier reduced neointimal formation in a porcine coronary restenosis model," Catheterization and Cardiovascular Interventions, vol. 64, pp. 389-394, Mar 2005.
[74] A. L. Klibanov, M. S. Hughes, J. N. Marsh, C. S. Hall, J. G. Miller, J. H. Wible, and G. H. Brandenburger, "Targeting of ultrasound contrast material. An in vitro feasibility study," Acta Radiologica. Supplementum, vol. 412, pp. 113-20, 1997.
[75] A. L. Klibanov, J. J. Rychak, W. C. Yang, S. Alikhani, B. Li, S. Acton, J. R. Lindner, K. Ley, and S. Kaul, "Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow," Contrast Media & Molecular Imaging, vol. 1, pp. 259-66, Nov-Dec 2006.
[76] Y. Kono, G. C. Steinbach, T. Peterson, G. W. Schmid-Schonbein, and R. F. Mattrey, "Mechanism of parenchymal enhancement of the liver with a microbubble-based US contrast medium: an intravital microscopy study in rats," Radiology, vol. 224, pp. 253-7, Jul 2002.
[77] O. Konovalov, I. Myagkov, B. Struth, and K. Lohner, "Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study," European Biophysics Journal with Biophysics Letters, vol. 31, pp. 428-437, Oct 2002.
[78] S. Kopanchuk and A. Rinken, "Changes in membrane fluidity during the micelle formation determine the efficiency of the solubilization of muscarinic receptors," Proceedings of the Estonian Academy of Sciences. Chemistry, vol. 50, p. 12, 2001.
[79] B. Krasovitski, V. Frenkel, S. Shoham, and E. Kimmel, "Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 3258-3263, Feb 22 2011.
[80] O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, "Acoustic droplet vaporization for therapeutic and diagnostic applications," Ultrasound in Medicine and Biology, vol. 26, pp. 1177-1189, Sep 2000.
[81] M. Krix, F. Kiessling, S. Vosseler, I. Kiessling, M. Le-Huu, N. E. Fusenig, and S. Delorme, "Comparison of intermittent-bolus contrast imaging with conventional power Doppler sonography: Quantification of tumour perfusion in small animals," Ultrasound in Medicine and Biology, vol. 29, pp. 1093-1103, Aug 2003.
[82] N. Kudo, K. Okada, and K. Yamamoto, "Sonoporation by Single-Shot Pulsed Ultrasound with Microbubbles Adjacent to Cells," Biophysical Journal, vol. 96, pp. 4866-4876, Jun 17 2009.
[83] M. Kukizaki and M. Goto, "Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes," Journal of Membrane Science, vol. 281, pp. 386-396, Sep 15 2006.
[84] G. M. Lanza and S. A. Wickline, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Progress in Cardiovascular Diseases, vol. 44, pp. 13-31, Jul-Aug 2001.
[85] G. M. Lanza and S. A. Wickline, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Current Problems in Cardiology, vol. 28, pp. 625-653, Dec 2003.
[86] W. Lauterborn and W. Hentschel, "Cavitation Bubble Dynamics Studied by High-Speed Photography and Holography .1.," Ultrasonics, vol. 23, pp. 260-268, 1985.
[87] W. Lauterborn and W. Hentschel, "Cavitation Bubble Dynamics Studied by High-Speed Photography and Holography .2.," Ultrasonics, vol. 24, pp. 59-65, Mar 1986.
[88] S. Lee, D. H. Kim, and D. Needham, "Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 1. A new method for determination of interfacial tension," Langmuir, vol. 17, pp. 5537-5543, Sep 4 2001a.
[89] S. Lee, D. H. Kim, and D. Needham, "Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2. Dynamics of phospholipid monolayer formation and equilibrium tensions at water-air interface," Langmuir, vol. 17, pp. 5544-5550, Sep 4 2001b.
[90] I. Lentacker, B. Geers, J. Demeester, S. C. De Smedt, and N. N. Sanders, "Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved," Molecular Therapy, vol. 18, pp. 101-108, Jan 2010.
[91] H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, and J. R. Lindner, "Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins," Circulation, vol. 107, pp. 455-460, Jan 28 2003.
[92] H. Leong-Poi, J. Song, S. J. Rim, J. Christiansen, S. Kaul, and J. R. Lindner, "Influence of microbubble shell properties on ultrasound signal: Implications for low-power perfusion imaging," Journal of the American Society of Echocardiography, vol. 15, pp. 1269-1276, Oct 2002.
[93] J. R. Lindner, "Assessment of inflammation with contrast ultrasound," Progress in Cardiovascular Diseases, vol. 44, pp. 111-120, Sep-Oct 2001.
[94] J. R. Lindner, M. P. Coggins, S. Kaul, A. L. Klibanov, G. H. Brandenburger, and K. Ley, "Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes," Circulation, vol. 101, pp. 668-675, Feb 15 2000.
[95] J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, "Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin," Circulation, vol. 104, pp. 2107-12, Oct 23 2001.
[96] Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, and J. Gatjens, "Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging," Biomaterials, vol. 32, pp. 6155-6163, Sep 2011.
[97] C. A. MacDonald, V. Sboros, J. Gomatam, S. D. Pye, C. M. Moran, and W. N. McDicken, "A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude," Ultrasonics, vol. 43, pp. 113-122, Dec 2004.
[98] K. E. Morgan, J. S. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibanov, and K. W. Ferrara, "Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, pp. 1494-1509, Nov 2000.
[99] P. M. Morse and K. U. Ingard, Theoretical Acoustics. New York: McGraw Hill, Inc., 1968.
[100] S. L. Mulvagh, A. N. DeMaria, S. B. Feinstein, P. N. Burns, S. Kaul, J. G. Miller, M. Monaghan, T. R. Porter, L. J. Shaw, and F. S. Villanueva, "Contrast echocardiography: current and future applications," Journal of the American Society of Echocardiography, vol. 13, pp. 331-42, Apr 2000.
[101] P. Narayan and M. A. Wheatley, "Preparation and characterization of hollow microcapsules for use as ultrasound contrast agents," Polymer Engineering and Science, vol. 39, pp. 2242-2255, Nov 1999.
[102] S. M. Nimjee, C. P. Rusconi, and B. A. Sullenger, "Aptamers: an emerging class of therapeutics," Annual Review of Medicine, vol. 56, pp. 555-83, 2005.
[103] J. Ophir and K. J. Parker, "Contrast Agents in Diagnostic Ultrasound," Ultrasound in Medicine and Biology, vol. 15, pp. 319-333, 1989.
[104] M. Palmowski, J. Huppert, G. Ladewig, P. Hauff, M. Reinhardt, M. M. Mueller, E. C. Woenne, J. W. Jenne, M. Maurer, G. W. Kauffmann, W. Semmier, and F. Kiesslin, "Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects," Molecular Cancer Therapeutics, vol. 7, pp. 101-109, Jan 2008.
[105] K. Pancholi, E. Stride, and M. Edirisinghe, "Generation of microbubbles for diagnostic and therapeutic applications using a novel device," Journal of Drug Targeting, vol. 16, pp. 494-501, 2008.
[106] Papahadj.D, S. Nir, and S. Ohki, "Permeability Properties of Phospholipid Membranes - Effect of Cholesterol and Temperature," Biochimica Et Biophysica Acta, vol. 266, pp. 561-&, 1972.
[107] V. R. S. Patil, C. J. Campbell, Y. H. Yun, S. M. Slack, and D. J. Goetz, "Particle diameter influences adhesion under flow," Biophysical Journal, vol. 80, pp. 1733-1743, Apr 2001.
[108] P. Prentice, A. Cuschierp, K. Dholakia, M. Prausnitz, and P. Campbell, "Membrane disruption by optically controlled microbubble cavitation," Nature Physics, vol. 1, pp. 107-110, Nov 2005.
[109] S. P. Qin, C. F. Caskey, and K. W. Ferrara, "Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering," Physics in Medicine and Biology, vol. 54, pp. R27-R57, Mar 2009.
[110] N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles," Journal of Controlled Release, vol. 138, pp. 268-276, Sep 15 2009.
[111] J. A. Reynolds, D. B. Gilbert, and C. Tanford, "Empirical Correlation between Hydrophobic Free-Energy and Aqueous Cavity Surface-Area," Proceedings of the National Academy of Sciences of the United States of America, vol. 71, pp. 2925-2927, 1974.
[112] J. G. Riess, "Fluorocarbon-based injectable gaseous microbubbles for diagnosis and therapy," Current Opinion in Colloid & Interface Science, vol. 8, pp. 259-266, Aug 2003.
[113] J. F. Roy, M. N. Chretien, B. Woodside, and A. M. English, "Reduction and S-nitrosation of the neuropeptide oxytocin: Implications for its biological function," Nitric Oxide-Biology and Chemistry, vol. 17, pp. 82-90, Sep 2007.
[114] L. L. Rubin and J. M. Staddon, "The cell biology of the blood-brain barrier," Annual Review of Neuroscience, vol. 22, pp. 11-28, 1999.
[115] J. J. Rychak, J. Graba, A. M. Y. Cheung, B. S. Mystry, J. R. Lindner, R. S. Kerbel, and F. S. Foster, "Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis," Molecular Imaging, vol. 6, pp. 289-296, Sep-Oct 2007.
[116] J. J. Rychak, J. R. Lindner, K. Ley, and A. L. Klibanov, "Deformable gas-filled microbubbles targeted to P-selectin," Journal of Controlled Release, vol. 114, pp. 288-299, Sep 12 2006.
[117] V. Sboros, "Response of contrast agents to ultrasound," Advanced Drug Delivery Reviews, vol. 60, pp. 1117-1136, Jun 30 2008.
[118] V. Sboros, C. M. Moran, S. D. Pye, and W. N. McDicken, "Contrast agent stability: A continuous B-mode imaging approach," Ultrasound in Medicine and Biology, vol. 27, pp. 1367-1377, Oct 2001.
[119] M. Schneider, M. Arditi, M. B. Barrau, J. Brochot, A. Broillet, R. Ventrone, and F. Yan, "Br1 - a New Ultrasonographic Contrast Agent Based on Sulfur Hexafluoride-Filled Microbubbles," Investigative Radiology, vol. 30, pp. 451-457, Aug 1995.
[120] M. Schneider, P. Bussat, M. B. Barrau, M. Arditi, F. Yan, and E. Hybl, "Polymeric Microballoons as Ultrasound Contrast Agents - Physical and Ultrasonic Properties Compared with Sonicated Albumin," Investigative Radiology, vol. 27, pp. 134-139, Feb 1992.
[121] E. G. Schutt, D. H. Klein, R. M. Mattrey, and J. G. Riess, "Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals," Angewandte Chemie-International Edition, vol. 42, pp. 3218-3235, 2003.
[122] J. H. Senior, "Fate and behavior of liposomes in vivo: a review of controlling factors," Critical Reviews in Therapeutic Drug Carrier Systems, vol. 3, pp. 123-93, 1987.
[123] D. Shangguan, Y. Li, Z. W. Tang, Z. H. C. Cao, H. W. Chen, P. Mallikaratchy, K. Sefah, C. Y. J. Yang, and W. H. Tan, "Aptamers evolved from live cells as effective molecular probes for cancer study," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 11838-11843, Aug 8 2006.
[124] P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, "Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound," Langmuir, vol. 27, pp. 10412-10420, Sep 6 2011.
[125] P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, "Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons," Biomaterials, vol. 33, pp. 3262-3269, Apr 2012.
[126] M. J. Shortencarier, P. A. Dayton, S. H. Bloch, P. A. Schumann, T. O. Matsunaga, and K. W. Ferrara, "A method for radiation-force localized drug delivery using gas-filled lipospheres," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 51, pp. 822-831, Jul 2004.
[127] K. K. Shung, R. A. Sigelmann, and J. M. Reid, "Scattering of ultrasound by blood," Ieee Transactions on Bio-medical Engineering, vol. 23, pp. 460-7, Nov 1976.
[128] K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues, 1 ed. Boca Raton, FL,: CRC Press, 1992.
[129] S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, "Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice," Ultrasound in Medicine and Biology, vol. 36, pp. 935-48, Jun 2010.
[130] A. Sofuni, H. Iijima, F. Moriyasu, D. Nakayama, M. Shimizu, K. Nakamura, F. Itokawa, and T. Itoi, "Differential diagnosis of pancreatic tumors using ultrasound contrast imaging," Journal of Gastroenterology, vol. 40, pp. 518-525, May 2005.
[131] J. Song, J. Christiansen, A. L. Klibanov, K. Ley, S. Kaul, and J. R. Lindner, "Adhesion of P-selectin-targeted microbubbles to venules: Implications for imaging inflammation," Journal of the American College of Cardiology, vol. 37, pp. 383a-383a, Feb 2001.
[132] J. Stange and H. Munstedt, "Rheological properties and foaming behavior of polypropylenes with different molecular structures," Journal of Rheology, vol. 50, pp. 907-923, Nov-Dec 2006.
[133] E. Stride and M. Edirisinghe, "Novel microbubble preparation technologies," Soft Matter, vol. 4, pp. 2350-2359, 2008.
[134] E. Stride and N. Saffari, "On the destruction of microbubble ultrasound contrast agents," Ultrasound in Medicine and Biology, vol. 29, pp. 563-573, Apr 2003.
[135] K. S. Suslick, Y. Didenko, M. M. Fang, T. Hyeon, K. J. Kolbeck, W. B. McNamara, M. M. Mdleleni, and M. Wong, "Acoustic cavitation and its chemical consequences," Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 357, pp. 335-353, Feb 15 1999.
[136] K. Tachibana, T. Uchida, K. Ogawa, N. Yamashita, and K. Tamura, "Induction of cell-membrane porosity by ultrasound," Lancet, vol. 353, p. 1409, Apr 24 1999.
[137] A. M. Takalkar, A. L. Klibanov, J. J. Rychak, J. R. Lindner, and K. Ley, "Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow," Journal of Controlled Release, vol. 96, pp. 473-82, May 18 2004.
[138] E. Talu, K. Hettiarachchi, R. L. Powell, A. P. Lee, P. A. Dayton, and M. L. Longo, "Maintaining monodispersity in a microbubble population formed by flow-focusing," Langmuir, vol. 24, pp. 1745-1749, Mar 4 2008.
[139] E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, "Tailoring the size distribution of ultrasound contrast agents: Possible method for improving sensitivity in molecular imaging," Molecular Imaging, vol. 6, pp. 384-392, Nov-Dec 2007.
[140] Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, "Local delivery of plasmid DNA into rat carotid artery using ultrasound," Circulation, vol. 105, pp. 1233-1239, Mar 12 2002.
[141] M. S. Tartis, J. McCallan, A. F. H. Lum, R. LaBell, S. M. Stieger, T. O. Matsunaga, and K. W. Ferrara, "Therapeutic effects of paclitaxel-containing ultrasound contrast agents," Ultrasound in Medicine and Biology, vol. 32, pp. 1771-1780, Nov 2006.
[142] G. A. Taylor, "Potential pediatric applications for US contrast agents: lessons from the laboratory," Pediatric Radiology, vol. 30, pp. 101-9, Feb 2000.
[143] C. Teupe, S. Richter, B. Fisslthaler, V. Randriamboavonjy, I. Fleming, R. Busse, A. M. Zeiher, and S. Dimmeler, "Efficient endothelial gene transfer with preserved vascular integrity by ultrasound-enhanced destruction of plasmid-loaded albumin microbubbles," European Heart Journal, vol. 23, pp. 381-381, Aug-Sep 2002.
[144] K. Tiemann, C. Veltmann, A. Ghanem, S. Lohmaier, M. Bruce, S. Kuntz-Hehner, C. Pohl, A. Ehlgen, T. Schlosser, H. Omran, and H. Becher, "The impact of emission power on the destruction of echo contrast agents and on the origin of tissue harmonic signals using power pulse-inversion imaging," Ultrasound in Medicine and Biology, vol. 27, pp. 1525-1533, Nov 2001.
[145] C. Y. Ting, C. H. Fan, H. L. Liu, C. Y. Huang, H. Y. Hsieh, T. C. Yen, K. C. Wei, and C. K. Yeh, "Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment," Biomaterials, vol. 33, pp. 704-712, Jan 2012.
[146] S. Tinkov, C. Coester, S. Serba, N. A. Geis, H. A. Katus, G. Winter, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization," Journal of Controlled Release, vol. 148, pp. 368-372, Dec 20 2010.
[147] S. Tinkov, G. Winter, C. Coester, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I - Formulation development and in-vitro characterization," Journal of Controlled Release, vol. 143, pp. 143-150, Apr 2 2010.
[148] V. P. Torchilin and V. Weissig, Liposomes : a practical approach, 2nd edn. ed. Oxford: Oxford University Press, 2003.
[149] E. C. Unger, T. P. McCreery, R. H. Sweitzer, V. E. Caldwell, and Y. Q. Wu, "Acoustically active lipospheres containing paclitaxel - A new therapeutic ultrasound contrast agent," Investigative Radiology, vol. 33, pp. 886-892, Dec 1998.
[150] F. S. Villanueva, R. J. Jankowski, S. Klibanov, M. L. Pina, S. M. Alber, S. C. Watkins, G. H. Brandenburger, and W. R. Wagner, "Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells," Circulation, vol. 98, pp. 1-5, Jul 7 1998.
[151] C. H. Wang, Y. F. Huang, and C. K. Yeh, "Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging," Langmuir, vol. 27, pp. 6971-6, Jun 7 2011.
[152] C. H. Wang, S. T. Kang, Y. H. Lee, Y. L. Luo, Y. F. Huang, and C. K. Yeh, "Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis," Biomaterials, vol. 33, pp. 1939-1947, Feb 2012.
[153] M. Ward, J. Wu, and J. F. Chiu, "Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents," Journal of the Acoustical Society of America, vol. 105, pp. 2951-7, May 1999.
[154] M. Ward, J. Wu, and J. F. Chiu, "Experimental study of the effects of Optison concentration on sonoporation in vitro," Ultrasound in Medicine and Biology, vol. 26, pp. 1169-75, Sep 2000.
[155] K. Wei, A. R. Jayaweera, S. Firoozan, A. Linka, D. M. Skyba, and S. Kaul, "Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion," Circulation, vol. 97, pp. 473-483, Feb 10 1998.
[156] K. Wei and S. Kaul, "Recent advances in myocardial contrast echocardiography," Curr Opin Cardiol, vol. 12, pp. 539-46, Nov 1997.
[157] G. E. Weller, F. S. Villanueva, E. M. Tom, and W. R. Wagner, "Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx," Biotechnology and Bioengineering, vol. 92, pp. 780-8, Dec 20 2005.
[158] M. A. Wheatley, J. D. Lathia, and K. L. Oum, "Polymeric ultrasound contrast agents targeted to integrins: Importance of process methods and surface density of ligands," Biomacromolecules, vol. 8, pp. 516-522, Feb 2007.
[159] M. A. Wheatley, B. Schrope, and P. Shen, "Contrast Agents for Diagnostic Ultrasound - Development and Evaluation of Polymer-Coated Microbubbles," Biomaterials, vol. 11, pp. 713-717, Nov 1990.
[160] S. A. Wickline, L. J. Thomas, J. G. Miller, B. E. Sobel, and J. E. Perez, "A Relationship between Ultrasonic Integrated Backscatter and Myocardial Contractile Function," Journal of Clinical Investigation, vol. 76, pp. 2151-2160, Dec 1985.
[161] P. J. Wilde, "Interfaces: their role in foam and emulsion behaviour," Current Opinion in Colloid & Interface Science, vol. 5, pp. 176-181, Jul 2000.
[162] Z. Z. Wong, O. D. Kripfgans, A. Qamar, J. B. Fowlkes, and J. L. Bull, "Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging," Soft Matter, vol. 7, pp. 4009-4016, 2011.
[163] W. H. Wright, T. P. McCreery, E. A. Krupinski, P. J. Lund, S. H. Smyth, M. R. Baker, R. L. Hulett, and E. C. Unger, "Evaluation of new thrombus-specific ultrasound contrast agent," Academic Radiology, vol. 5, pp. S240-S242, Apr 1998.
[164] Z. Y. Xiao, D. H. Shangguan, Z. H. Cao, X. H. Fang, and W. H. Tan, "Cell-specific internalization study of an aptamer from whole cell selection," Chemistry-a European Journal, vol. 14, pp. 1769-1775, 2008.
[165] F. Xie, J. M. Tsutsui, J. Lof, E. C. Unger, J. Johanning, W. C. Culp, T. Matsunaga, and T. R. Porter, "Effectiveness of lipid microbubbles and ultrasound in declotting thrombosis," Ultrasound in Medicine and Biology, vol. 31, pp. 979-985, Jul 2005.
[166] Z. W. Xing, H. T. Ke, J. R. Wang, B. Zhao, X. L. Yue, Z. F. Dai, and J. B. Liu, "Novel ultrasound contrast agent based on microbubbles generated from surfactant mixtures of Span 60 and polyoxyethylene 40 stearate," Acta Biomaterialia, vol. 6, pp. 3542-3549, Sep 2010.
[167] F. Yang, Y. X. Li, Z. P. Chen, Y. Zhang, J. R. Wu, and N. Gu, "Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging," Biomaterials, vol. 30, pp. 3882-3890, Aug 2009.
[168] W. T. Yang, G. M. K. Tse, P. K. W. Lam, C. Metreweli, and J. Chang, "Correlation between color power Doppler sonographic measurement of breast tumor vasculature and immunohistochemical analysis of microvessel density for the quantitation of angiogenesis," Journal of Ultrasound in Medicine, vol. 21, pp. 1227-1235, Nov 2002.
[169] J. Zhang and P. R. Unwin, "Kinetics of bromine transfer across Langmuir monolayers of phosphatidylethanolamines at the water/air interface," Physical Chemistry Chemical Physics, vol. 5, pp. 3979-3983, Sep 15 2003.
[170] M. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, "Initial Investigation of Acoustic Droplet Vaporization for Occlusion in Canine Kidney," Ultrasound in Medicine and Biology, vol. 36, pp. 1691-1703, Oct 2010.
[171] S. Zhao, M. Borden, S. H. Bloch, D. Kruse, K. W. Ferrara, and P. A. Dayton, "Radiation-force assisted targeting facilitates ultrasonic molecular imaging," Molecular Imaging, vol. 3, pp. 135-48, Jul 2004.
[172] Y. Z. Zhao, H. D. Liang, X. G. Mei, and M. Halliwell, "Preparation, characterization and in vivo observation of phospholipid-based gas-filled microbubbles containing hirudin," Ultrasound in Medicine and Biology, vol. 31, pp. 1237-1243, Sep 2005.
[173] W. X. Zong and C. B. Thompson, "Necrotic death as a cell fate," Genes & Development, vol. 20, pp. 1-15, Jan 1 2006.