簡易檢索 / 詳目顯示

研究生: 李振弘
Lee, Jeng-Hung
論文名稱: 中高能量光子輻射量測標準與劑量驗證之研究
Measurement standards and dosimetry verifications for medium and high energy photon radiations
指導教授: 王竹方
Wang, Chu-Fang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 156
中文關鍵詞: 量測標準自由空氣游離腔石墨圓餅型游離腔空氣克馬水吸收劑量劑量驗證
外文關鍵詞: Measurement standard, Free air ionization chamber, Graphite pancake ionization chamber, Air kerma, Absorbed dose to water, Dose verification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Photon radiation is widely used in industries, radiation diagnosis and treatment and radiation protection and is most related with the quality of daily life of the public. Hence, it is necessary to develop and improve photon measurement standards to establish complete domestic calibration and traceability systems to reduce the risk induced by radiation and improve healthcare and life quality of the public. The dissertation is primarily concerning measurement standard systems for photon radiations higher than 50 keV. It deals with methods that are sufficiently precise and well established to be incorporated into the ionimetric measurement as primary standards. The primary standards used in Taiwan and the international comparisons for photon dosimetry are discussed in this research. We also describe the reference conditions that are suitable for establishing primary standards and we provide the measurements for determining the air kerma and absorbed dose, including the evaluation of correction factors and uncertainty needed under conditions that were used to calibrate an instrument at the National Radiation Standard Laboratory (NRSL) of the Institute of Nuclear Energy Research (INER, Taiwan). The comparison results for the air kerma of medium-energy X-rays and absorbed dose to water of the INER’s primary standards showed satisfactory agreements in the measurements which were within the combined expanded uncertainties (k = 2).
    Many aspects are relevant to the reference dosimetry of other therapeutic beams including the comparison of the absorbed dose to water calibration in medical accelerator photon beams traceable to primary standards following the recommendations given in the American Association of Physicists in Medicine (AAPM) Task Group 21 (TG-21) and Task Group (TG-51) dosimetry protocols and the accurate and convenient quality assurance program that should be included in the dosimetry system of the radiotherapy level radiation. Through the photon reference dosimetry analysis of the TG-51/TG-21 ratio, the measurement differences caused from using TG-21 and TG-51 protocols in the hospitals were evaluated. For all types of linear accelerators and cylindrical chambers at the 13 participating hospitals in Taiwan, the TG-51/TG-21 dose ratios were the same within ±1.5% using 6 MV and 10 MV high photon energies; the differences were less than the combined uncertainty irrespective of the chamber make and model for each photon included here. Thus, a draft guide for quality assurance to institutions changing their standard basis from the TG-21 to TG-51 protocol was suggested based on the comparison results of the two dosimetry protocols. Besides, this dissertation shows the results of the dosimetry characteristic comparison for environmental radiophotoluminescent glass dosemeter (RPLGD) and thermoluminescent dosemeter (TLD) systems employed at the INER. Environmental cumulative doses measured by a RPLGD and a TLD were compared at the same monitoring points of INER during two years. The sensitivity of TLD decreased gradually due to fading at higher temperatures. The differences between the results obtained by RPLGD and TLD are mainly caused by the ambient temperature. In addition, We referred to the American National Standard Institute (ANSI) Draft Standard N13.29 (1996) to organize the environmental dosimetry performance tests of the INER’s RPLGDs and the TLDs. The results mean that both kinds of dosemeters can meet the performance test criteria. An accreditation procedure for the institutes which provide the environmental dosimetry services in Taiwan was suggested based on the comparison results of these two dosimetry systems.


    光子輻射已廣泛應用於工業、放射診療與輻射防護等領域,並與民眾日常生活品質密切相關,實有必要研發與精進光子量測標準,以建立國內完整之校正追溯體系,降低輻射所造成之風險,增進國人之健康照護與生活品質。本論文旨在探討能量高於50 keV之光子輻射量測標準系統,與自由空氣游離腔與石墨游離腔等原級標準件之研製,本研究亦討論在台灣地區與國際比對所使用之光子劑量原級標準,也說明核能研究所國家游離輻射標準實驗室建立原級標準之參考條件,與進行空氣克馬及水吸收劑量之量測過程,並包含原級標準各項修正因子與不確定度之評估。由核能研究所中能量X射線空氣克馬與水吸收劑量原級標準之國際比對結果,顯示比對差異均小於擴充不確定度(k=2),證明本研究建立之標準系統與國際一致。
    為研究醫用高能光子參考劑量追溯至原級標準之一致性,我們也分別依據美國醫學物理學會(AAPM) TG-21 (1983)及TG-51 (1999)議定書(protocol),進行醫用加速器參考劑量之量測比對實驗,透過分析TG-51/TG-21光子參考劑量比值數據,可評估國內醫院在使用TG-21與TG-51進行劑量量測時所造成的差異。實驗證明,對於國內參加比對之十三家醫院而言,在6 MV與10 MV兩種高能光子能量下,利用 TG-51及TG-21議定書所量測之加速器水吸收劑量差異均小於1.5%,且醫用加速器與游離腔之廠牌、構造,並不會影響TG-51與TG-21之劑量測定結果,研究成果可提供相關單位在轉換議定書時,量測臨床光子參考劑量的品保指引;同時本研究也建立一套簡便之劑量驗證系統,以執行醫用加速器輸出劑量之品保驗證。此外,本論文也研究核能研究所玻璃劑量計(RPLGD)與熱發光劑量計(TLD)等兩種環境劑量計之特性,比較在2005-2007年間,玻璃劑量計與熱發光劑量計在相同偵測位置所量測之環境累積劑量值,結果顯示TLD在高溫下的消光現象會造成量測訊號的減少,且RPLGD 與 TLD 的劑量評估差異主要是環境溫度所造成的影響,我們也參考美國國家標準協會(ANSI) N13.29 (1996 )規範,建立環境劑量計之能力試驗執行方法,相關研究成果將可作為台灣地區執行環境劑量評估實驗室認證評鑑之參考。

    誌謝 Table of Contents i List of Figures iv List of Tables vii List of symbols and abbreviations ix Abstract xv 中文摘要 xvii Chapter 1 Introduction 1 1.1 Dosimetric principle, quantities and units 3 1.1.1 Kerma 3 1.1.2 Absorbed dose 4 1.1.3 Relationships between kerma and dose 5 1.1.4 Stopping power 8 1.1.5 Bragg-Gray cavity theory 10 1.1.6 Spencer-Attix cavity theory 11 1.2 Air kerma measurement standard for medium-energy X-rays 13 1.3 Absorbed dose to water measurement standard for Co-60 15 1.4 Radiotherapy dose verification for medical accelerators 17 1.5 Environmental dosimetry characteristic test and comparison 20 1.6 Overview of dissertation 22 Chapter 2 The performance evaluation of improved FAC 31 2.1 Introduction 31 2.2 Materials and Methods 32 2.2.1 Irradiation facilities 32 2.2.2 Air kerma rate determination 34 2.2.3 Comparison procedures 34 2.3 Results and Discussion 35 2.3.1 Improved FAC design and correction factors 35 2.3.2 Measurement uncertainty evaluation of the improved FAC 40 2.3.3 Standard comparison results 41 2.4 Conclusion 42 Chapter 3 The performance evaluation of GPIC 53 3.1 Introduction 53 3.2 Materials and Methods 54 3.3 Results and Discussion 57 3.3.1 INER GPIC design and correction factors 57 3.3.2 Comparison results for the standards 61 3.4 Conclusion 63 Chapter 4 Dose verification for clinical high-energy photon beams 72 4.1 Introduction 72 4.2 Materials and Methods 74 4.2.1 Reference dosimetry protocols comparison 74 4.2.2 Photon dose verification for radiotherapy radiation 76 4.3 Results and Discussion 78 4.3.1 Comparison results for different dosimetry protocols 78 4.3.2 Verification results for photon reference dosimetry 80 4.4 Conclusion 82 Chapter 5 Characteristic comparison and performance test for environmental dosemeters 93 5.1 Introduction 93 5.2 Materials and Methods 94 5.2.1 Dosemeters and instruments 94 5.2.2 Environmental monitoring 95 5.2.3 Environmental dosimetry performance testing 96 5.3 Results and Discussion 97 5.3.1 Dosimetry characteristics of RPLGDs and TLDs 97 5.3.2 Environmental monitoring for RPLGDs and TLDs 98 5.3.3 Dosemeter performance testing results 99 5.4 Conclusion 101 Chapter 6 Conclusions and future works 112 References 116 Appendix Publication list 124

    AAPM TG-21, 1983. A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med. Phys.10, 741–771.

    Allisy-Roberts, P.J., Shobe, J., 1998. Comparison of the standards of absorbed dose to water of the NIST and the BIPM for Co-60 rays. Rapport BIPM-98/05.

    Allisy-Roberts, P.J., Burns, D.T., Boas, J.F., Huntley, R.B., Wise, K.N., 2000a. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for Co-60 gamma radiation. Rapport BIPM-99/17.

    Allisy-Roberts, P.J., Burns, D.T., Shortt, K.R., Ross, C.K., Seuntjens, J.P., 2000b. Comparison of the absorbed dose to water standards of the NRC and the BIPM for Co-60 rays. Rapport BIPM-99/13.

    Allisy-Roberts, P.J., Burns, D.T., Csete, I., 2003. Comparison of the absorbed dose to water standards of the OMH and the BIPM for Co-60 rays. Rapport BIPM-03/08.

    Allisy-Roberts, P.J., Burns, D.T., Kessler, C., 2007. “Measuring condition used for the calibration of ionization chambers at the BIPM,” Rapport BIPM-2007/06.

    Almond, P.R., Biggs, P.J., Coursey, B.M., Hanson, W.F., Haq, M.S. Nath, R., Rogers, D.W.O., 1999. AAPM’s protocol for clinical reference dosimetry of high-energy photon and electron beams. Med. Phys. 26, 1847-1870.

    American National Standards Institute, 1996. Environmental dosimetry performance — Criteria for testing. ANSI Draft report N13.29, New York.

    Andreo, P., 1992. Absorbed dose beam quality factors for the dosimetry of high-energy photon beams. Phys. Med. Biol. 37, 2189-2211.

    Araki, F., Dale Kubo H., 2002. Comparison of high-energy photon and electron dosimetry for various dosimetry protocols. Med. Phys. 29 (5), 857-868.

    Araki, F., Ikegami, T., Ishidoya, T., Kubo, H.D., 2003. Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosemeter and a diode detector. Med. Phys. 30 (8), 1976-1981.

    Araki, F., Moribe, N., Shimonobou, T., Yamashita, Y., 2004. Dosimetric properties of radiophotoluminescent glass rod dosemeter in high-energy photon beams from a linear accelerator and Cyber-Knife. Med. Phys. 31 (7), 1980-1986.

    Asahi Techno Glass Corporation, 2000a. Explanation material of RPL glass dosemeter: Small element system. Tokyo.

    Asahi Techno Glass Corporation, 2000b. Technical information for RPL glass dosemeter type SC-1. Tokyo.

    Asahi Techno Glass Corporation, 2000c. Glass dosimetry system: FGD-200 series instruction manual. Tokyo.

    Attix, F.H, 1961. Electronic equilibrium in free-air chambers and a proposed new chamber design. NRL Report 5646, U.S. Naval Research Laboratory, Washington, D.C.

    Attix, F.H., 1986. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, New York.

    BIPM Com. Cons. Étalons Mes. Ray. Ionisants (Section I), 1985. 11, R157-R166.

    Boutillon, M., Niatel, M.-T., 1973. A study of a graphite cavity chamber for absolute exposure measurements of Co-60 gamma rays. Metrologia 9, 139-146.

    Boutillon, M., 1983. Perturbation correction for the ionometric determination of absorbed dose in a graphite phantom for 60Co gamma rays. Phys. Med. Biol. 28, 375-388.

    Boutillon, M., Perroche-Roux, A.M., 1987. Re-evaluation of the W value for electrons in dry air. Phys Med. Biol. 32, 213-219.

    Boutillon, M., Perroche, A.-M., 1989. Radical non-uniformity of the BIPM Co-60 beam. Rapport BIPM-89/2.

    Boutillon, M., Perroche, A.-M., 1992. Determination of absorbed dose to water for Co-60 by the scaling theorem, Rapport BIPM-1992/01.

    Boutillon, M., Perroche, A.-M., 1993. Ionometric determination of absorbed dose to water for cobalt-60 gamma rays. Phys. Med. Biol. 38, 439-454.

    Boutillon, M., Allisy-Roberts, P.J., Burns, D.T., Referowski, Z., 1998. BIPM and COMECON comparisons of air kerma standards in x and radiation fields. Rapport BIPM-98/8.

    Boyd, A.W., Eisenlohr, H.H., 1983. IAEA/WHO Co-60 teletherapy dosimetry programme using mailed LiF dosimeters: A survey of results obtained during 1975-1982. Med. Phy. 10, 491-492.

    Burgkhardt, B., Festag, J.G., Piesh, E., Ugi, S., 1996. New aspects of environmental monitoring using flat phosphate glass and thermoluminescence dosemeters. Radiat. Prot. Dosim. 66, 187-192.

    Burns, D.T., 1999. Consistent set of calculated values for electron-loss and photon-scatter corrections for parallel-plate free-air chambers. BIPM CCRI(I)/99-4.

    Burns, D.T., Toni, M.P., Bovi, M., 2000. Comparison of the air-kerma standards of the ENEA-INMRI and the BIPM in the medium-energy X-ray range. Rapport BIPM-2000/04.

    Burns, D.T., Büermann, L., Kramer, H.-M., Lange, B., 2002. Comparison of the air-kerma standards of the PTB and the BIPM in the medium-energy X-ray range. Rapport BIPM-02/07.

    Burns, D.T., 2003. Degrees of equivalence for the key comparison BIPM.RI(I)-K3 between national primary standards for medium-energy x-rays. Metrologia 40, Tech. Suppl., 06036.

    Burns, D.T., Büermann, L., 2009. Free-air ionization chambers. Metrologia 46, S9–S23.

    Chen, W.L., Su, S.H., Su, L.L., Hwang, W.S., 1999. Improved free-air ionization chamber for the measurement of X-rays. Metrologia 36, 19-24.

    Coletti, J.G,, Pearson, D.W., Dewerd, L.A., 1995. Mammography exposure standard:design and characterization of free-air ionization chamber. Rev. Sci. Instrum. 66(3), 2574-2577.

    Csete, I., Büermann, L., Kramer, H.-M., Lange, B., 2000. Comparison of the PTB and OMH air kerma standards for medium-energy X-rays. PTB-Bericht Dos-35, ISBN 3-89701-592-7. Braunschweig.

    Ding, G.X., Cygler, J.E., Kwok, C.B., 2000. Clinical reference dosimetry: Comparison between AAPM TG-21 and TG-51 protocols. Med. Phys. 27 (6), 1217-1225.

    Eisenlohr, H.H., Jayaraman, S., 1977. IAEA/WHO cobalt-60 teletherapy dosimetry programme using mailed LiF dosimeters: A survey of results obtained during 1970-1975. Phys. Med. Biol. 22, 18-28.

    Grimbergen, T.W.M., van Dijk, E., de Vries, W., 1998. Correction factors for the NMI-free-air ionization chamber for medium-energy X-rays calculated with the Monte Carlo method. Phys. Med. Biol. 43, 3207-3224.

    Harris, C.K., Elson, H.R., Lamba, M.A.S., Foster, A.E., 1997. A comparison of the effectiveness of thermoluminescent crystals LiF:Mg, Ti and LiF:Mg, Cu, P for clinical dosimtery. Med. Phys. 24 (9), 1527-1529.

    Harshaw Inc., 1982. Harshaw dose calculation algorithm for the Type 8807 environmental dosemeter: User’s manual. Ohio.

    Huntley, R.B., Wise, K.N., Boas, J.F., 1999. The Australian standard of absorbed dose. NPL Workshop on Recent Advances in Calorimetric Absorbed Dose Standards, Teddington.

    Huq, M.S., Andreo, P., 2001. Reference dosimetry in clinical high-energy photon beams: Comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols. Med. Phys. 28 (1), 46-54.

    IAEA 374, 1994. Calibration of dosimeters used in Radiotherapy. International Atomic Energy Agency Tech. Rep. Ser. No. 374, Vienna.

    IAEA 398, 2000. Absorbed dose determination in external beam radiotherapy. International Atomic Energy Agency Tech. Rep. Ser. No. 398, Vienna.

    IEC, 1990. Safety of medical electrical equipment, part 2: particular requirements for medical electron accelerators in the range of 1-50 MeV. International Electrotechnical Commission Publication, 601-2-1.

    ICRU 31, 1979. Average energy required to produce an ion pair. International Commission on Radiation Units and Measurements, Report 31, Bethesda, MD.

    ICRU 37, 1984. Stopping powers for electrons and positrons. International Commission on Radiation Units and Measurements, Report 37, Bethesda, MD.

    ICRU 50, 1993. Prescribing, recording and reporting photon beam therapy. International Commission on Radiation Units and Measurements, Report 50, Bethesda, MD.

    ICRU 60, 1998. Fundamental radiation quantities and units. International Commission on Radiation Units and Measurements, Report 60, Bethesda, MD.

    ICRU 64, 2001. Dosimetry of high-energy photon beams based on standards of absorbed dose to water. International Commission on Radiation Units and Measurements, Report 64, Bethesda, MD.

    ISO, 1993. Guide to the expression of uncertainty in measurement. International Organization for Standardization, ISBN 92-67-10188-9, Geneva.

    ISO 4037-1, 1996. X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy Part 1:Radiation characteristics and production methods. International Organization for Standardization, Geneva.

    Izewska, J., Gajewski, R., Gwiazdowska, B., Kania, M., Rostkowska, J., 1995. TLD postal dose intercomparison for megavoltage units in Poland. Radiother. Oncol. 36, 143-152.

    Izewska, J., Andreo, P., 2000. The IAEA/WHO TLD postal program for radiotherapy hospitals. Radiother. Oncol. 54, 65-72.

    Izewska, J., Bera, P., Vatnitsky, S., 2002. IAEA/WHO TLD postal audit service and high precision measurements for radiotherapy level dosimetry. Radiat. Prot. Dosim. 101, 387-392.

    Klemic, G., Shobe, J., Sengupta, S., Shebell, P., Miller, K., Carolan, P.T., Holeman, G., Kahnhauser, H., Lamperti, P., Soares, C., Azziz, N., Moscovitch, M., 1999. State of the art of environmental dosimetry: 11th international intercomparison and proposed performance tests. Radiat. Prot. Dosim. 85, 201-206.

    Kron, T., Duggan, L., Smith, T., Rosenfeld, A., Butson, M., Kaplan, G., Howlett, S., Hyodo, K., 1998. Dose response of various radiation detectors to synchrotron radiation. Phys. Med. Biol. 43, 3235–3259.

    Kroutilíková, D., Novotný, J., Judas, L., 2003. Thermoluminescent dosimeters (TLD) quality assurance network in the Czech Republic. Radiother. Oncol. 66, 235-244.

    Kutcher, G.J., Coia, L., Gillin, M., Hanson, W.F., Leibel, S., Morton, R.J., Palta, J.R., Purdy, J.A., Reinstein, L.E., Svensson, G.K., Weller, M., Wingfield, L., 1994. Comprehensive QA for radiation Oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Med. Phy. 21 (4), 581-619.

    Laitano, R.F., Lamperti, P.J., Toni, M.P., 1998. Comparison of NIST and ENEA air kerma standards. J. Res. Natl. Inst. Stand. Technol. 103, 365-378.

    Lamperti, P.J., O’Brien, M., 2001. Calibration of X-ray and gamma-ray measuring instruments. National Institute of Standards and Technology Special Publication 250-58, Gaithersburg, MD.

    Lee, J.H., Kotler, L.H., Büermann, L., Hwang, W.S., Chiu, J.H., Wang, C.F., 2005. The performance of the INER improved free-air ionization chamber in the comparison of air kerma calibration coefficients for medium-energy X-rays. Radiat. Meas. 39, 1-10.

    Lee. J.H., Hwang, W.S., Kotler, L.H., Webb, D.V., Büermann, L., Burns, D.T., Takeyeddin, M., Shaha, V.V., Srimanoroth, S., Meghzifene, A., Hah, S.H., Chun, K.J., Kadni, B., Takata, N., Msimang, Z., 2008. APMP/TCRI key comparison report of measurement of air kerma for medium-energy X-Rays (APMP.RI(I)-K3). Metrologia 45, Tech. Suppl., 06012.

    Lin, C.Y., Su, S.H., Chen, C.L., 2004a. The calibration system of absorbed dose to water for Co-60 at Building 035. Institute of Nuclear Energy Research Technical Reports Series INER-2820, Longtan.

    Lin, M.S., Yang, J.A., Yeh, S.H., 2000. The establishment of environmental dose evaluation model for Harshaw 8807 dosemeter. Institute of Nuclear Energy Research Technical Reports Series INER-2347, Longtan.

    Lin, M.S., Yeh, S.H., Chiu, J.H., Hsu, S.M., 2004b. The study of the FGD-202 glass dosimetry system. Institute of Nuclear Energy Research Technical Reports Series INER-2404, Longtan.

    Lin, U.T., Chu, C.H., 2006. Correction factors for the INER-improved free-air ionization chambers calculated with the Monte Carlo method. Appl. Radiat. Isot. 64, 608–614.

    Mackie, T.R., Bielajew, A.F., Rogers, D.W.O., Battista, J.J., 1988. Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys. Med. Biol. 33, 1-20.

    Namito, Y., Hirayama H., 2000. LSCAT:Low-energy photon-scattering expansion for the EGS4 code (inclusion of electron impact ionization). High-energy Accelerator Research Organization KEK Internal 2000-4, Tsukuba.

    NCRP 69, 1981. Dosimetry of X-ray and Gamma-ray beams for radiation therapy in the energy range 10 keV to 50 MeV. National Council on Radiation Protection and Measurements, Report 69, Bethesda, MD.

    Nelson, W.R., Hirayama, H., Rogers, D.W., 1985. The EGS4 Code System. Stanford Linear Accelerator Center, Report SLAC-265.

    Nett, P., Svensson, H., 1994. Radiation dosimetry in health care: expanding the reach of global networks. IAEA Bull. 4, 33-36.

    de Planque, G., Gesell, T., 1986. Environmental measurements with thermoluminescent dosemeters — Trends and issues. Radiat. Prot. Dosim. 17, 193-200.

    Perroche, A.-M., Hargrave, N.J., 1989. Comparison of air kerma and exposure standards of ARL and BIPM for X rays (100 to 250 kV) and Co-60 gamma radiation, Rapport BIPM-1989/1.

    Piesch, E., Burgkhardt, B., Fischer, M., Rober, H.G., Ugi, S., 1986. Properties of radiophotoluminescencent glass dosemeter systems using pulsed laser UV excitation. Radiat. Prot. Dosim. 17, 293-297.

    Piesch, E., Burgkhardt. B., Vilgis, M., 1990. Photoluminescence dosimetry: Progress and present state of art. Radiat. Prot. Dosim. 33, 215-226.

    Piesch, E., Burgkhardt. B., Vilgis, M., 1993. Progress in phosphate glass dosimetry: experience and routine monitoring with a modern dosimetry system. Radiat. Prot. Dosim. 47, 409-414.

    Piesch, E., Burgkhardt. B., 1994. Photoluminescence dosimetry: the alternative in personnel monitoring. Radioprotection 29, 39-67.

    Reich, H., 1979. Choice of the measuring quantity for therapy-level dosemeters. Phys. Med. Biol. 24, 895–900.

    Rogers, D.W.O., 1992. The advantages of absorbed-dose calibration factors. Med. Phys. 19, 1227-1239.

    Saez-Vergara, J.C., Romero, A.M., Ginjaume, M., Ortega, X., Miralles, H., 1999. Photon energy response matrix for environmental monitoring systems based on LiF:Mg,Ti and hypersensitive phosphors (LiF:Mg,Cu,P and α-Al2O3:C). Radiat. Prot. Dosim. 85, 207-211.

    Shortt, K.R., Ross, C.K., Schneider, M., Hohlfeld, K., Roos, M., Perroche, A.-M., 1993. A comparison of absorbed dose standards for high-energy X-rays, Phys. Med. Biol. 38, 1937-1955.

    Spencer, L.V., Attix, F.H., 1955. A theory of cavity ionization. Radiat. Res. 3, 239-254.

    Su, S.H., Shu, L.L., Hwang, W.S., 1996. Improved free air ionization chamber for the measurement of X-ray. Institute of Nuclear Energy Research Technical Reports Series INER-1486, Longtan.

    Su, S.H., Lin, C.Y., Chen, C.L., Hwang, W.S., 2003a. Absorbed dose to water for Co-60 using the pancake graphite ionization chamber. Institute of Nuclear Energy Research Technical Reports Series INER-2451, Longtan.

    Su, S.H., Lin, C.Y., Chen, C.L., Chen, S.J., Lee, J.H., Hwang W.S., 2003b. Air kerma rate measurement for Cs-137 and Co-60 using the spherical graphite air ionization chamber. Institute of Nuclear Energy Research Technical Reports Series INER-2347, Longtan.

    Svensson, H., Hanson, G.P., Zsdansky, K., 1990. The IAEA/WHO TL dosimetry programme for radiotherapy centres 1969-1987. Acta Oncol. 29, 461-467.

    Tailor, R.C., Hanson, W.F., 2002. Calculated absorbed-dose ratios, TG51/TG21, for most widely used cylindrical and parallel-plate ion chambers over a range of photon and electron energies. Med. Phys. 29 (7), 1464-1472.

    WHO, 1988. Quality Assurance in Radiotherapy. World Health Organization, Geneva.

    Wyckoff, H.O., Attix, F.H., 1969. Design of free-air ionization chamber. Nat. Bur. Stand. Handbook, No. 64. U. S. Government Printing Office, Washington, DC, pp. 1-16.

    Yamazaki, Y., Tonouchi, S., Hashimoto, T., 2003. Cumulative dose measurements using radiophotoluminescence glass dosimeter in cold areas. J. Radioanal. Nucl. Chem. 255 (3), 565-569.

    Wyckoff, H.O., Attix, F.H., 1969. Design of free-air ionization chamber. Nat. Bur. Stand. Handbook, No. 64. U.S. Government Printing Office, Washington, DC, pp. 1-16.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE