研究生: |
彭心怡 Peng, Sydney |
---|---|
論文名稱: |
Encapsulating chondrocyte using injectable and thermosensitive mPEG-polyester hydrogels |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
湯學成
Tang, Shiue-Cheng 姚少凌 Yao, Chao-Ling |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 水膠 、細胞包埋 、溫度敏感型水膠 |
外文關鍵詞: | thermosensitive, hydrogel, mPEG-PLGA, mPEG-PVLA, chondrocytes, cell encapsulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The objective of this study was to evaluate thermosensitive mPEG-polyester hydrogels prepared from diblock copolymers methoxy poly(ethylene glycol)-(polylactide-co-glycolide) (mPEG-PLGA) and methoxy poly(ethylene glycol)-(valerolactone-co-lactide) (mPEG-PVLA) for chondrocyte encapsulation in cartilage tissue engineering applications. Different block lengths of mPEG-polyester copolymers were prepared by ring-opening polymerization and preliminary results showed that hydrogels prepared from mPEG-PLGA sized (550-1405) and mPEG-PVLA sized (550-1405) and (750-1916) were capable of gelation under physiological temperature. The swelling ratio of mPEG-PVLA (750-1916) hydrogel was significantly higher than those compared by at least 2-folds. Copolymer solutions prepared in phosphate buffer saline (PBS) resulted in acidic pH environments of 4.1~4.9 within the hydrogel which is hostile to encapsulated cells. Substituting PBS with Dulbecco’s modified eagle medium (DMEM) resulted in neutral hydrogels with pH ~7. Degradation study showed that hydrogels underwent incomplete degradation within a 30 day period with mPEG-PVLA exhibiting slower degradation compared to mPEG-PLGA due to greater hydrophobicity.
Viability of chondrocytes encapsulated was confirmed by thiazolyl blue tetrazolium bromide (MTT) and LIVE/DEAD staining which demonstrated homogenous encapsulation as well as over 50% viability immediately post-encapsulation. Taken together with DNA quantification results, we concluded that the hydrogels were capable of supporting proliferation of chondrocytes within 7 days of culturing in vitro. In addition to proliferation, extracellular matrix (ECM) proteins namely glycosaminoglycans (GAGs) increased most significantly in mPEG-PVLA (750-1916) hydrogel with a 11.8-fold increase from day 1 to day 21. On day 14, the collagen content mPEG-PVLA (750-1916) was higher than all other groups (p<0.05). The addition of 5% collagen type I did not significantly affect proliferation and GAG or collagen secretion as was expected. Results of this study indicate that mPEG-polyester hydrogels are capable of supporting chondrogenesis in vitro and that their application as injectable cartilage tissue engineering systems is promising.
1. Green, W.T.J., Behavior of Articular Chondrocytes in Cell Culture. Clinical Orthopaedics & Related Research, 1971. 75(March/April ): p. 248-260.
2. Bell, E., B. Ivarsson, and C. Merrill, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A, 1979. 76(3): p. 1274-8.
3. Lum, L. and J. Elisseeff, Injectable hydrogels for cartilage tissue engineering, in Topics in Tissue Engineering. 2005.
4. Temenoff, J., Mikos, A., Tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21: p. 431-440.
5. Marlovits, S., Truppe, M., Vecsei, V.,Schlegel, W., Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. Journal of Bone and Joint Surgery, 2004. 86(B): p. 286-295.
6. Bugbee W., C.F., Osteochondral allograft transplantation. Clinical Journal of Sport Medicine, 1999. 18(1): p. 67-75.
7. Isogai N., Kusuhara, H., Ikada, Y., Ohtani, H., Jacquet, R., Lowder, E., Landis, W., Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Engineering, 2006. 12(4): p. 691-703.
8. Domm, C., Schunke, M., Christesen, K., Kurz, B., Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension Osteoarthritis and Cartilage, 2002. 10(1): p. 13-22.
9. Panossian, A., Ashiku, S., Kirchhoff, C., Randolph, M., Yaremchuk, M., Effects of cell concentration and growth period on articular and ear chondrocyte transplants for tissue engineering. Plastic and Reconstructive Surgery 2001. 108: p. 392-402.
10. Mauck, R., D. Yuan, and R. Tuan, Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture Osteoarthritis and Cartilage, 2006. 14(2): p. 179-189
11. French, M., Rose, M., Canseco, S., Athanasiou, K., Chondrogenic Differentiation of Adult Dermal Fibroblasts Annals of Biomedical Engineering, 2003. 32(1): p. 50-56.
12. Douglas, T., Heinemann, S., Hempel, U., Mietrach, C., Knieb, C., Bierbaum, S., Scharnweber, D., Worch, H., Characterization of collagen II fibrils containing biglycan and their effect as a coating on osteoblast adhesion and proliferation Journal of Materials Science: Materials in Medicine, 2007. 19(4): p. 1653-1660.
13. Yang, X.B., Roach, H., Clarke, N., Bhatnagar, R., Oreffo, R., Collagen biomimetic scaffolds for bone tissue engineering. Tissue Engineering. Tissue Eng, 2004. 10(7-8): p. 1148-1159.
14. Liu, G., Hu, Y., Zhao, J., Wu, S., Xiong, Z., Lu, R.,Effect of type I collagen on the adhesion, proliferation, and osteoblastic gen expression of bone marrow-derived mesenchymal stem cells. Chin J Traumatol, 2004. 7(6): p. 358-362.
15. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 2003. 24: p. 4337-4351.
16. Tan, H. and K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 2010. 3: p. 1746-1767.
17. Ruel-Gariepy, E. and J. Leroux, In-situ forming hydrogels - review of temperature-sensitive systems. Eur J Pharm Biopharm, 2004. 58: p. 409-426.
18. Fedorovich, N.E., Alblas, J., De Wijn, R., Hennink, W., Verbout, A., Dhert W., Hydrogels as extracellular matrices for skeletal tissue engineering: state of the art and novel application in organ printing—a review. Tissue Eng, 2007. 13: p. 1905-1925.
19. Jeong, B., Bae, Y., Lee, D., Kim, S., Biodegradable block copolymers as injectable drug-delivery systems. Nature, 1997. 388(6645): p. 860-862.
20. Schild, H.G. and D.A. Tirrell, Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem., 1990. 94(10): p. 4352-4356.
21. Jeong, B., Y.H. Bae, and S.W. Kim, Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules, 1999. 32(21): p. 7064-7069.
22. Zentner, G.M., Rathi, R., Shih, C., McRea, J., Seo, M., Oh, H., Rhee, B.G., Mestecky, J., Moldoveanu, Z., Morgan, M., Weitman, S., Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release, 2001. 72(1-3): p. 203-15.
23. Kim, M.S., Kim, S.K., Kim, S.H., Hyun, H., Khang, G., Lee, H., In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels. Tissue Eng, 2006. 12(10): p. 2863-73.
24. Kim, M.S., Hyun, H., Kwang, S., Young, H., Jung, W., Chang, R., Gilson, K., Lee, H., Preparation and characterization of MPEG-PCL diblock copolymers with thermo-responsive sol-gel-sol phase transition. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(18): p. 5413-5423.
25. Gopferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-14.
26. Park, K., Cho, K., Kim, J., Kim, I., Han, D., Functional PLGA Scaffolds for Chondrogenesis of Bone-Marrow-Derived Mesenchymal Stem Cells. Macromol. Biosci., 2009. 9: p. 221-229.
27. Chen, J.F., C.T.Y. Lin, and I.M. Chu, Study of novel biodegradable thermo-sensitive hydrogels of methoxy-poly(ethylene glycol)-block-polyester diblock copolymers. Polymer International, 2010. 59(10): p. 1428-1435.
28. Karageorgiou, V. and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26: p. 5474-5491.
29. Mauney, J.R., Nguyen, T., Gillen, K., Kirker-head, C., Gimble, J., Kaplan, D., Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials, 2007. 28(35): p. 5280-90.
30. Bryant, S.J. and K.S. Anseth, The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials, 2001. 22(6): p. 619-26.
31. Lu, H.F., Targonsky, E., Wheeler, M., Cheng, Yu., Thermally induced gelable polymer networks for living cell encapsulation. Biotechnol Bioeng, 2007. 96(1): p. 146-55.
32. Wang, C., R.R. Varshney, and D.A. Wang, Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev, 2010. 62(7-8): p. 699-710.
33. Zhu, M.M., Goyal, A., Rank, D., Gupta, S., Vanden Boom, T., Lee, S., Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog, 2005. 21(1): p. 70-7.
34. Escobar-Chávez, J., Lopez-Cervantes, M., Naik A., Kalia, Y., Quintanar-Guerrero, D. Ganem-Quintanar, A., Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. , 2006. 9(3): p. 339-358.
35. Klouda L, Perkins, K., Watson, B., Hacker, M., Bryant, S., Raphael, R., Kasper F., Mikos, A.,Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomaterialia, 2011. 7(4): p. 1460-1467.
36. Park, H., Guo, X., Temenoff, J., Tabata, Y., Caplan, A., Kasper, K., Mikos, A., Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules, 2010. 10(3): p. 541-546.
37. Bryant, S.J. and K. Anseth, Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A, 2003. 64(1): p. 70-79.
38. Roberts, J., Nicodemus, G., Greenwald, E., Bryant, S., Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels. Clinical Orthopaedics and Related Research, 2011. Symposium: clinically rlevant strategies for treating cartilage and meniscal pathology: p. 1-10.
39. Wang, N., J. Qiu, and X. Wu, Biodegradation of lactic-glycolic acid oligomers. ACS Symposium Series - Tailored polymeric materials for controlled delivery systems, 1998. 709: p. 242-253.
40. Park, T.G., Degrdatation of poly(D,L-lactic acid) microspheres: Effect of molecular weight. Journal of Controlled Release, 1994. 30: p. 161-173.
41. Gan, T., Y. Guan, and Y. Zhang, Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis. Journal of Materials Chemistry, 2010. 20: p. 5937-5944.
42. Chou, A. and S. Nicoll, Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation. Journal of Biomedical Materials Research Part A, 2009. 91A(1): p. 187-194.
43. Burdick, J., C. Chung, and R. Lager, Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 2005. 6(386-391).
44. Johnstone, B., T. Hering, and A. Caplan, In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, 1998. 238(1): p. 265-272.
45. Oh, S., Kim, T., Im, G., Lee, J.,Investigation of Pore Size Effect on Chondrogenic Differentiation of Adipose Stem Cells Using a Pore Size Gradient Scaffold. Biomacromolecules, 2010. 11: p. 1948-1955.
46. Welzel, P., Prokoph, S., Zieris, A., Grimmer, M., Zschoche, S., Freudenberg, U., Werner, C., Modulating bofunctional starPEG heparin hydrogels by varying size and ratio of the constituents. Polymers, 2011. 3: p. 602-620.
47. Kim, Y., Sah, R., Doong, Y., Grodzinsky, A., Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Analytical Biochemistry, 1988. 174(1): p. 168-176.
48. Temenoff, J., Park, H., Jabbari, E., Sheffield, T., LeBar, In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. Journal of Biomedical Materials Research, 2004. 70(2): p. 235-244.