簡易檢索 / 詳目顯示

研究生: 徐紹珉
Hsu, Shao-Min
論文名稱: 印刷電子圖案不規則邊緣之進階量化方法
Advanced Qualification Method for Patterns with Irregular Edges in Printed Electronics
指導教授: 羅丞曜
Lo, Cheng-Yao
口試委員: 林士傑
Lin, Shih-Chieh
周大鑫
Chou, Ta-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 印刷電子圖案轉移完整性噴墨印刷邊緣粗糙度
外文關鍵詞: Inkjet printing, line edge roughness, pattern transfer completeness, printed electronics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為提升印刷電子圖案邊緣量化的準確性與泛用性。為了達成圖案轉移完整性(pattern transfer completeness, PTC)於邊緣粗糙度(line edge roughness, LER)方面的評估,本文提出了一種新穎的方法,可以量化統計印刷圖案與其相應設計圖案之偏差,並依此開發圖案粗糙度量化演算法。
    在本研究中,利用兩種噴墨印刷條件,製作阿基米德、對數與雙曲螺旋的規律但非對稱圖案,並分別展示不同條件下,圖案於演算法結果的LER差異,以顯示本方法在不同圖案與條件下的廣泛支援性與有效性。本演算法使用笛卡爾座標中的參數式來描述圖案與分析,而僅有微小且可忽略的評估誤差,優於既有方法。這項研究也包含數位影像、偵測範圍與其步進距離等不同影響的綜合分析。結果証明,本研究提出之方法不僅正確地反映了PTC,而且還展示了操作靈活性。例如,通過設定更大的偵測範圍或其步進距離,可以提高評估效率。


    To evaluate the pattern transfer completeness (PTC) with respect to the line edge roughness (LER), this paper proposes an advanced method which statistically quantifies the deviations of printed patterns from their corresponding designed patterns. Asymmetric patterns of Archimedean, logarithmic, and hyperbolic spirals are demonstrated using inkjet printing under various conditions to show different LERs and the effectiveness of the advanced method. The advanced method analyzes patterns using parametric forms in Cartesian coordinates with negligible evaluation errors which outperform existing methods. This study involved comprehensive analyses of the impacts of digitized images, the detection range, and its movement. The results show that the proposed method not only correctly reflected the PTC, but also exhibited operational flexibilities, e.g. the evaluation efficiency may be enhanced by introducing an enlarged detection range or an increased movement of the detection range.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 符號表 ix 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 邊緣粗糙度的重要性 2 1.2.2 噴墨印刷條件導致線邊緣平整度之差異 3 1.2.3 噴墨印刷圖案的評估 4 1.3 研究動機 5 第二章 理論與設計 21 2.1 直線圖案之邊緣粗糙度定義 21 2.2 支援圖案的範圍與限制 22 2.3 支援圖案之邊緣粗糙度定義 22 2.4 圖案粗糙度量化演算法 24 2.4.1 讀取與設定 24 2.4.2 樣本點選取 25 2.4.3 結果計算 27 第三章 方法驗證 39 3.1 設備與材料 39 3.1.1 圖案製備相關 39 3.1.2 影像拍攝與分析相關 40 3.2 方法與流程 40 3.2.1 圖案設計與製備階段 40 3.2.2 影像拍攝與處理階段 41 3.2.3 影像校正與分析階段 42 第四章 結果與討論 56 4.1 噴印結果分析 56 4.1.1 阿基米德螺旋 56 4.1.2 對數螺旋 57 4.1.3 雙曲螺旋 58 4.2 演算法參數之影響 59 4.2.1 偵測範圍之影響 59 4.2.2 步進距離之影響 60 4.3 演算法之限制 61 第五章 結論與未來展望 76 5.1 結論 76 5.2 未來展望 76 參考文獻 82 附錄一 影像對準主函式 85 附錄二 進階量化演算法主函式 88 附錄三 自定義函式 94 附錄四 圖案量化操作流程 100 發表清單 114

    [1] Chan H-J, Huang B-C, Wang L-W, Liao K-H and Lo C-Y 2017 Porosity reduction in inkjet-printed copper film by progressive sintering on nanoparticles Thin Solid Films 627 33-8
    [2] Lin C-Y, Wang L-W, Liao K-H and Lo C-Y 2017 Structure compensation and illumination uniformity improvement through inkjet printing in organic light-emitting diode subpixels Journal of Vacuum Science & Technology B 35 020601
    [3] Wang L-W and Lo C-Y 2017 Morphology and conductivity improvement of metal mesh through roll-to-roll-compatible near-infrared sintering IET Micro & Nano Letters 12 886-90
    [4] Allen M L, Aronniemi M, Mattila T, Alastalo A, Ojanperä K, Suhonen M and Seppä H 2008 Electrical sintering of nanoparticle structures Nanotechnology 19 175201
    [5] Liao K-H and Lo C-Y 2014 Thermoresistive strain sensor and positioning method for roll-to-roll processes Sensors 14 8082-95
    [6] Jahn S F, Engisch L, Baumann R R, Ebert S and Goedel W A 2008 Polymer microsieves manufactured by inkjet technology Langmuir 25 606-10
    [7] Kim C, Nogi M, Suganuma K and Yamato Y 2012 Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films ACS Applied Materials & Interfaces 4 2168-73
    [8] Kim Y, Jang S and Oh J H 2015 High-resolution electrohydrodynamic printing of silver nanoparticle ink via commercial hypodermic needles Applied Physics Letters 106 014103
    [9] Nguyen P Q, Yeo L-P, Lok B-K and Lam Y-C 2014 Patterned surface with controllable wettability for inkjet printing of flexible printed electronics ACS Applied Materials & Interfaces 6 4011-6
    [10] Zhao N, Chiesa M, Sirringhaus H, Li Y, Wu Y and Ong B 2007 Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution Journal of Applied Physics 101 064513
    [11] Gogolides E, Constantoudis V, Patsis G P and Tserepi A 2006 A review of line edge roughness and surface nanotexture resulting from patterning processes Microelectronic Engineering 83 1067-72
    [12] Kang B J and Oh J H 2010 Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate Thin Solid Films 518 2890-6
    [13] Fukutome H, Momiyama Y, Kubo T, Tagawa Y, Aoyama T and Arimoto H 2006 Direct evaluation of gate line edge roughness impact on extension profiles in sub-50-nm n-MOSFETs IEEE Transactions on Electron Devices 53 2755-63
    [14] Kim C, Nogi M and Suganuma K 2012 Electrical conductivity enhancement in inkjet-printed narrow lines through gradual heating Journal of Micromechanics and Microengineering 22 035016
    [15] Öhlund T, Örtegren J, Forsberg S and Nilsson H-E 2012 Paper surfaces for metal nanoparticle inkjet printing Applied Surface Science 259 731-9
    [16] Virtanen J, Bjorninen T, Ukkonen L and Sydanheimo L 2010 Passive UHF inkjet-printed narrow-line RFID tags IEEE Antennas and Wireless Propagation Letters 9 440-3
    [17] Huang B-C, Chan H-J, Hong J-W and Lo C-Y 2016 Methodology for evaluating pattern transfer completeness in inkjet printing with irregular edges Journal of Micromechanics and Microengineering 26 065009
    [18] Chandhok M, Datta S, Lionberger D and Vesecky S 2007 Impact of line-width roughness on Intel's 65-nm process devices. In: Advances in Resist Materials and Processing Technology XXIV: International Society for Optics and Photonics) p 65191A
    [19] Ban Y, Sundareswaran S and Pan D Z 2010 Electrical impact of line-edge roughness on sub-45-nm node standard cells Journal of Micro/Nanolithography, MEMS, and MOEMS 9 041206
    [20] Chen C-T and Tu K-Z 2012 Morphologies of conductive looped liquid lines inkjet-printed on substrate surfaces Journal of Micromechanics and Microengineering 22 055001
    [21] Kawata I, Hasegawa N and Takami S 2006 New World of CD-SEM in Utilization of Design Data Hitachi Review 55 61
    [22] Yamaguchi A, Steffen R, Kawada H and Iizumi T 2006 Bias-free measurement of LER/LWR with low damage by CD-SEM. In: Metrology, Inspection, and Process Control for Microlithography XX: International Society for Optics and Photonics) p 61522D
    [23] Shin C 2016 Variation-Aware Advanced CMOS Devices and SRAM, (Dordrecht: Springer Netherlands) pp 19-35
    [24] Dimatix F 2008 Materials Printer & Cartridge DMP-2800 Series Printer & DMC-11600 Series Cartridge FAQ.
    [25] Mu L, Hu Z, Zhong Z, Jiang C, Wang J, Peng J and Cao Y 2017 Inkjet-printing line film with varied droplet-spacing Organic Electronics 51 308-13
    [26] Bunday B D, Bishop M, Villarrubia J S and Vladar A E 2003 CD-SEM measurement line-edge roughness test patterns for 193-nm lithography. In: Metrology, Inspection, and Process Control for Microlithography XVII: International Society for Optics and Photonics) pp 674-89
    [27] Yamaguchi A, Nakagaki S R and Kawada H 2005 Cd-sem technologies for 65-nm process node Hitachi Review 54 15
    [28] Basaran O A, Gao H and Bhat P P 2013 Nonstandard inkjets Annual Review of Fluid Mechanics 45 85-113
    [29] Hong Y, Chen Z, Trofimov A A, Lei J, Chen J, Yuan L, Zhu W, Xiao H, Xu D and Jacobsohn L G 2017 Direct inkjet printing of miniaturized luminescent YAG: Er3+ from sol-gel precursor Optical Materials 68 11-8

    QR CODE