簡易檢索 / 詳目顯示

研究生: 何昶毅
Ho, Chang-Yi
論文名稱: 二氧化鈦被覆對304不鏽鋼在模擬沸水式反應器環境的防蝕效益研究
The Influence of TiO2-coated on the Anti-corrosion Behavior of Type 304 Stainless Steels in Simulated Boiling Water Reactor Environments
指導教授: 葉宗洸
Yeh, Tsung-Kuang
口試委員: 歐陽汎怡
王立華
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 二氧化鈦沿晶應力腐蝕龜裂Cherenkov輻射沸水式反應器電化學腐蝕電位動態電位極化掃描
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    早期奈米光觸媒主要應用於潔淨與自淨環境上。近幾年此光觸媒技術已被應用於保護沸水式反應器(Boiling Water Reactor, BWR)的組件,研究發現二氧化鈦被覆在BWR組件表面後,可抑制304不□鋼組件的沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)。其原理是利用BWR運轉時爐心產生的Cherenkov輻射,激發具n型半導體特性的二氧化鈦產生自由電子,促使水化學環境中的氧化劑進行還原反應,因而降低氧化劑濃度並抑制金屬組件的腐蝕。目前運轉中的BWR多採用加氫水化學(Hydrogen Water Chemistry, HWC)技術,來降低組件材料的電化學腐蝕電位,防制IGSCC的發生。然而在較高飼水注氫量(高於0.5 ppm)的HWC狀態下,會伴隨著輻射劑量率增加的副作用。若採用具備抑制特性的二氧化鈦被覆,理論上應可在不施行HWC情況下,亦能有效降低組件材料的腐蝕電位與腐蝕速率。

    本研究採用動態循環熱水沉積法,在150 □C以及280 □C溫度條件下進行已預長氧化膜304不□鋼試片的二氧化鈦被覆處理,並觀察被覆處理前後試片的表面形貌。我們亦於模擬沸水式反應器水化學環境下,對試片進行電化學極化掃描(electrochemical polarization)分析,以瞭解304不□鋼施行氧化鈦被覆前後的電化學特性差異。結果顯示,預長氧化膜試片經被覆處理後,二氧化鈦在試片表面呈均勻分佈。在紫外光照射的環境下,發現明顯的陽極電流並且有效降低腐蝕電位
    (Electrochemical corrosion potential, ECP),並在較低溶氧環境時能低於-230mV,認為能有效抑制IGSCC的發生


    Nano-photocatalysts have been widely used for cleaning or self-cleaning applications for the past few decades. This photocatalysis process was adopted to protect the structural components in a boiling water reactor (BWR) from corrosion in recent years. It was found that TiO2 coatings deposited on the surfaces of Type 304 stainless steels were able to mitigate intergranular stress corrosion cracking (IGSCC) in the stainless steels. The principle is to generate sufficient free electrons on the TiO2 coated components upon the absorption of Cherenkov radiation in a BWR. The TiO2 coating bears the n-type semiconductor characteristics, and the induced free electrons would enhance the reduction of the oxidizing species and thus lessen the corrosion of the coated components. Hydrogen water chemistry (HWC) has been the most commonly used techniques for corrosion potential reduction and IGSCC mitigation in BWRs around the world. However, this technique would cause elevated radiation fields when the feedwater hydrogen concentration exceeds 0.5 ppm. A successful application of TiO2 coatings in a BWR is expected to effectively reduce the corrosion potential and the corrosion rate of the structural components even without the presence of HWC. TiO2 nanoparticles were deposited on pre-oxidized Type 304 stainless steel specimens by hydrothermal deposition at 150 oC and 280 oC , and the surface morphologies of the specimens were examined. Electrochemical polarization analyses were conducted to investigate the impact of ultraviolet (UV) radiation on the electrochemical behavior of oxygen and the TiO2 treated specimens in simulated BWR environments. The results showed that the distribution of TiO2 deposited on the specimen surface was not uniform and continuous. It was also observed that the corrosion current densities of the treated specimens and the exchange current densities of the oxygen reduction reactions were comparatively lower in the presence of UV radiation. Without UV radiation, however, no significant differences were observed between the TiO2 treated and untreated specimens. These results indicate that the TiO2 treatment in combination with UV radiation would effectively reduce the corrosion rate of Type 304 stainless steels in high temperature oxygenated environments.

    目錄 摘要i Abstract. ........ .ii 致謝.....................iii 目錄.......iv 表目錄................ vi 圖目錄............……..vii 第一章前言............. 1 1.1 研究背景........... 1 1.2 研究目的............ 2 1.3 研究方法........ 3 第二章基礎理論.........4 2.1 應力腐蝕龜裂.............4 2.1.1應力腐蝕龜裂肇因.......4 2.1.2應力腐蝕龜裂的型態......5 2.1.3應力腐蝕龜裂現代理論......6 2.1.4 防治方法.................8 2.2 混合電位理論...........11 2.2.1混合電位模式 (Mixed Potential Model, MPM)…………………...11 2.2.2影響ECP大小的重要參數........12 2.3電化學腐蝕電位與應力腐蝕關係.........13 2.4 BWR防蝕技術簡介......14 2.4.1加氫水化學(HWC) .......14 2.4.2貴重金屬添加(NMCA) ...15 2.4.3抑制性被...............16 2.4.4光觸媒二氧化鈦被覆(TiO2 Coating) ...............18 第三章文獻回顧 3.1 不鏽鋼組件在高溫形成氧化膜的特性.........................................21 3.1.1 高溫純水中不□鋼表面氧化膜結構...........................................21 3.1.2 高溫純水中不□鋼表面氧化膜成長機制...................................27 3.1.3 拉曼散射光譜分析.......34 3.2 光觸媒二氧化鈦防蝕技術應用....................35 3.2.1 初期發展..............37 3.2.2.1溶膠凝膠法(sol-gel) .... 37 3.2.2 光觸媒二氧化鈦在照光情況下對不□鋼組件的防蝕技術....... 37 3.2.2.2 噴霧熱解法(spray pyrolysis) .............................. 40 3.2.2.3 電漿噴灑法(plasma spray) .............................41 3.2.2.4 化學添加注射法(Chemical Injection Method) ..........................48 3.2.2.5 原子層沉積技術(Atomic Layer Deposition) ............................ 52 第四章 研究方法...............56 4.1 實驗方法與流程.........56 4.2 試片準備..................56 4.3 敏化程度測試.........57 4.4 預長氧化膜...........58 4.5 光觸媒二氧化鈦被覆......58 4.6 實驗設備..........59 4.6.1 模擬BWR水循環系統......59 4.6.2 熱水沉積法二氧化鈦被覆系統...........59 4.6.3 模擬Cherenkov 輻射紫外光源與高溫爐透光視窗裝置............60 4.6.3.1紫外光源與高溫爐透光視窗裝置................60 4.6.3.2紫外光源的校正.........61 4.6.3.3紫外光照射強度的計算與測量............61 4.6.4 參考電極製作........63 4.7 表面分析...........64 4.7.1 輝光放電分光儀(Glow Discharge Spectrometer, GDS) .............64 4.7.2 SEM 表面顯微結構分析與EDX成分分析..................................64 4.7.3 拉曼光譜儀(Raman Sectroscapy) ..................64 4.7.4 感應式偶合電漿質譜分析(ICP-MS) ..........................................64 4.8 高溫電化學分析...............................65 4.8.1 預長氧化膜電化學腐蝕電位(ECP)監測.....................................66 4.8.2 被覆二氧化鈦試片照射紫外線光源電化學腐蝕電位觀測.......66 4.8.3 動態電位極化掃瞄.......66 第五章 結果與討論 ...........69 5.1 敏化程度分析 ........69 5.2預長氧化膜分析........69 5.2.1 掃描式電子顯微鏡(SEM & EDX) ..............................................69 5.2.2 雷射拉曼散射光譜(Raman Spectroscopy) ..................................72 5.3 光觸媒二氧化鈦被覆結果分析......................................................73 5.3.1 掃描式電子顯微鏡(SEM & EDX) ..............................................73 5.3.2 感應偶合電漿質譜儀分析(ICP-MS) .........................................76 5.4 高溫電化學分析.........77 5.4.1 照射UV光對電化學腐蝕電位的影響........................................77 5.4.2動態電位極化掃描...... 78 5.4.2.1 NP+TiO2 deposition with 100ppm at 150℃之動態電位極化掃描79 5.4.2.2 NP+TiO2 deposition with 10ppm at 150℃之動態電位極化掃描 81 5.4.2.3 NP+TiO2 deposition with 100ppm at 280℃之動態電位極化掃描82 5.4.2.4 NP+TiO2 deposition with 10ppm at 280℃之動態電位極化掃描 84 5.4.2.5 HP+TiO2 deposition with 100ppm at 280℃之動態電位極化掃描86 5.4.2.6 HP+TiO2 deposition with 10ppm at 280℃之動態電位極化掃描 87 5.8 實驗總結 ...................89 5.4.2.7 極化掃描數據總結................................89 第六章 結論.............93 6.1結果與討論............93 6.2未來工作...............93 參考文獻 .............94

    [1] Fredric A. Simonen, Stephen R. Gosselin, “Life Prediction and
    Monitoring of NuclearPower Plant Components for Service-Related Degradation” Journal of PressureVessel Technology, February 2001, Volume 123, Issue 1, pp. 58-64
    [2] M. Shindo et al, Department of Materials Science and Engineering,
    Japan AtomicEnergy Research Institute, “Effect of minor elements on irradiation assisted stresscorrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials,233-237(1996)1393-1396.
    [3] J.T. Busby, G.S. Was, E.A. Kenik ,“Isolating the effect of
    radiation-inducedsegregation in irradiation-assisted stress corrosion cracking of austenitic stainlesssteels,” Journal of Nuclear Materials, 302 (2002) 20–40
    [4] M.A.Al-Anezi, G.S.Frankel and A.K. Agrawal, ”Susceptibility of
    ConventionalPressure Vessel Steel to Hydrogen-Induced Cracking and
    Stress-OrientedHydrogen-Induced Cracking in Hydrogen
    Sulfide-Containing DiglycolamineSolutions,” Corrosion, Vol.55
    No.11 pp.1101-1109.
    [5] ArseneS ,Bai J.B. , Bompard P. , “Hydride Embrittlement and
    Irradiation Effects onthe Hoop Mechanical Properties of Pressurized Water Reactor (PWR) andBoiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. HydrideEmbrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20°C and 300 °C,” Metallurgical and Materials Transactions A, Volume34, Number 3, 1March 2003, pp. 553-566.
    [6] R. L. Cowan, Nuclear Engineering International, January 1986, p. 26.
    [7] R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen
    WaterChemistry,” Water Chemistry of Nuclear Reactor Systems 7 , BNES,
    BournemouthEngland, Oct. 13-17 , 1996 , p. 196.
    [8] Chien C. Lin, F. R. Smith, R. L. Cowan, “Effect of Hydrogen Water
    Chemistry onRadiation Field Buildup in BWRs, ”Nuclear Energy and Design 166 (1996) 31-36.
    [9] D. A. Jones, “Principles and Prevention of Corrosion 2nded, ”
    Prentice Hall, UpperSaddle River, NJ(1996).
    [10]P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data”, Corrosion /99, paper no. 145, Houston, TX, NACE International, (1999).
    [11] P. L. Andresen, ”Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water, ”Corrosion Vol.64 No.5 pp.439-464.
    [12]Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999
    [13] P. Chung, “Quantitative Study of the Degree of Sensitization of Austenitic Steel by Electrochemical Measurements, ” M. S. Theses , the Ohio State Uni , 1979
    [14] Herbert H. Uhlig& R. Winston Revie , Corrosion and Corrosion Control, Chapter 7.
    [15]王佰揚, “不同抑制性被覆條件之敏化304不□鋼在高溫純水環境中的電化學行為研究,” 國立清華大學碩士論文.
    [16] P. Ford et al., “Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288℃ Water”, Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1988
    [17] 鍾自強〝 焊接奧斯田鐵不锈鋼的問題及解決方法〞機械月刊,第七卷第十期,中華民國七十年10月號
    [18]F.P. Ford ,P.L. Andresen, “Corrosion in Nuclear Systems : Environment Assisted Cracking in Light Water Reactors,” in Corrosion Mechanisms , eds. P. Marcus. J. Ouder (New York, NY: Marcel Dekker , 1994 ).pp.501-546
    [19]Kazushige ISHIDA et al., “Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II)Reactivity of Hydrazine with Oxidant in High Temperature WaterunderGamma-irradiation”,Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 43, No. 3, p. 242–254 (2006)
    [20] D. D. Macdonald, "Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors," Corrosion, Vol. 48, No. 3 p.194-205 (1992).
    [21]D. D. Macdonald et al., "Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments," Corrosion, Vol. 52, p. 768-785 (1996).
    [22] Y. Fukaya, M. Akashi, “Photoelectrochemical Protection of Stainless
    Alloys in BWRPrimary Coolant Environment” Proc. 10th Int. Symp.on Environment Degradation ofMaterials in Nuclear Power Systems –Water Reactors, (2002).
    [23] Kaesche, H.,Die Korrosion der Metalle: Phys-Chem. Prinzipien une aktuelle Probleme, 3rd edn. Springer-Verlag, Berlin, 1990.
    [24] Sato, N. and Okamoto, G. ,Electrochemical Passivation of Metals, in Comprehensive Treatise of Electrochemistry, Vol. 4, Electrochemical Materials Science, ed. New York and London, 1981, pp. 193-245.
    [25] McBee, C.L. and Kruger, J. Electrochim. Acta, 1972, 17, 1337-1341
    [26] Winkler, R., Htittner, F. and Michel, F. VGB Kraftwerkstechnik, 1989, 69, 527-531.
    [27] Winkler, R. and Lehmann, H. VGB Kraftwerkstechnik, 1985, 65,421426
    [28]Asakura, Y. etal. Corrosion NACE, 1989, 45, 119-124.
    [29] Y.J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion Vol. 55, No.1, January 1999.
    [30] Young-Jin Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water” International Water Chemistry Conference, San Francisco, October 2004.
    [31] S. Uchida et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless in High Temperature Water, (V) Characterization of Oxide Film on Stainless Steel by multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.11, p.1199-1206(2002).
    [32] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses ,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.2, p.233-241(2005).
    [33] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.8, p.884-895(2006).
    [34] B. Stellwag,“The Mechanism of Oxide Film Formation on Austenitic Stainless Steels in High Temperature Water,” Corrosion Science, Vol. 40, No. 2, p. 337 (1998).
    [35] Lister, D.H., Davidson, R.D. and McAlpine, E. Corros. Sci., 1987, 27, 113-140.
    [36] Leistikow, S. and Kraft, R. Werkstofjre und Korrosion, 1974,25, 12-25.
    [37] Pick, M.E. and Segal, M.G. Nucl. Eng., 1983,22,433-444.
    [38] Robertson, Corrosion Science, Vol.29, p.1275-1291, 1989.
    [39] R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
    [40] Y.F. Cheng, F.R. Steward, “Corrosion of carbon steels in high-temperature water studied by electrochemical techniques”, Corrosion Science 46 (2004) 2405–2420
    [41] C.S. Kumai and T.M. Devine, “Oxidation of Iron in 288°C, Oxygen-Containing Water”, Corrosion Vol. 61, No. 3, 2005.
    [42] D.F. Taylor, Corrosion 35 (1979): p. 550.
    [43]B.Beverskog, “Pourbaix Diagrams for the Ternary System of Iron-Chromium-Nickel,”Corrosion Vol. 55, No.11, November1999.
    [44] Yoichi Wada et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (IV) Effects of Oxide Film on Electrochemical Corrosion Potential,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.38, No.3, p.183-192(2001).
    [45]Y.J. Kim, “In-Situ Electrochemical Impedance Measurement of Oxide Film on Type 304 Stainless Steel in High Temperature Water,”Corrosion Vol. 56, No.4, April2000.
    [46] A. Fujishima、K. Honda, Nature, 37, 238 (1972).
    [47] Y. Paz, Z. Lou, L. Rabenberg, and A. Heller, J. Mater. Res., 10, 2842
    (1995).
    [48] Y. Ohko, S. Saitoh, T. Tatsuma, and A. Fujishima, J. Electrochem.
    Soc., 148, B24(2001).
    [49] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A.
    Kitamura, M.Shimohigoshi, and T. Watanabe, Nature (London), 388, 431
    (1997).
    [50] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A.
    Kitamura, M.Shimohigoshi, and T. Watanabe, Adv. Mater. (Weinheim,
    Ger.), 10, 135 (1998).
    [51] K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Environ. Sci.
    Technol.,32, 726 (1998).
    [52] P.-C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum,
    and W. A.Jacoby, Appl. Environ. Microbiol.,65, 4094 (1999).
    [53] J. Peral, X. Domenech, and D. F. Ollis, J. Chem. Technol. Biotechnol.,
    70,117(1997).
    [54] J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, and M. Rouse,
    Appl.Catal., B, 17, 25 (1998).
    [55] C. Renz, Z. Anorg. Chem., 110, 104 (1920); C. Renz, Helv. Chim.Acta,
    4, 961(1921)
    [56] J. C. Hudson and J. F. Stanner, J. Iron Steel Inst., 175, 381 (1953).;
    W. Feitknecht,Chem. Ind., 1102 (1959).; J. E. M. Mayne, Br. Corros.
    J., 5, 106 (1970)
    [57] J. Yuan and S. Tsujikawa, J. Electrochem. Soc., 142, 3444 (1995).
    [58] T. Konishi and S. Tsujikawa, Zairyo-to-Kankyo, 44, 534 (1995).
    [59] J. Huang, T. Shinohara, and S. Tsujikawa, Zairyo-to-Kankyo, 44, 651
    (1997).
    [60] G. X. Shen, Y. C. Chen, C. J. Lin, Thin Solid Films, 489 (2005) 130-136
    [61] Y. Ohko, S. Saitoh, T. Tatsuma, and Akira Fujishima, Journal of The
    Electrochemical Society, 148 (1) B24-B28 (2001)
    [62] J. Li, H. Yun, and C. J. Lin, Journal of The Electrochemical Society,
    154 (11)C631-C636 (2007)
    [63] Masato Okamura et al. “Corrosion Mitigation of BWR Structural
    Materials by thePhotoelectric Methods with TiO2 -Laboratory Experiments of TiO2 Effect on ECPBehavior and Materials Integrity-”, ENVIRONMENTAL DEGRADATION OFMATERIALS IN NUCLEAR SYSTEMS-WATER REACTORS (2005).
    [64] K.Takamoriet. al, “Corrosion Mitigation of BWR Structural
    Materials by thePhotoelectric Method with TiO2- A SCC Mitigation Technique and its FeasibilityEvaluation -, “12th International Conference on Environmental Degradation ofMaterials in Nuclear Power Systems-Water Reactors, TMS 2005
    [65] K.Takamoriet. al, “DEVELOPMENT OF BWR COMPONENTS SCCMITIGATION
    METHOD BY THE TiO2TREATING TECHNIQUE“, 13thInternational Conference on Environmental Degradation of Materials in Nuclear
    Power Systems-Water Reactors, British Columbia, (2007)
    [66] M. Okamura et al., “SCC Mitigation Method of BWR Structural
    materials by TiO2technique”Proc. Symposium on Water Chemistry and Corrosion of Nuclear PowerPlants in Asia, Taipei, Taiwan, September 26-28 p.117 (2007)
    [67] Y.J. Kim, P.L. Andresen, Corrosion, 56 (2000): p. 1242.
    [68]Masato Okamura et al,“ELECTROCHEMICAL BEHAVIOR OF TIO2 DEPOSITED
    STAINLESS STEEL IN HIGH TEMPERATURE WATER”NPC 2010
    [69] Masato OKAMURAet al, “Study of TiO2 deposition behavior on
    structural materials under high pH conditions”SYMPOSIUM ON WATER CHEMISTRY AND CORROSION IN NUCLEAR POWER PLANTS IN ASIA 2009
    [70] H. Kawakami et al., Journal of The Electrochemical Society, 155 (2)
    C62-C68(2008)
    [71] C. X. Shan, X. Hou, K.-L. Choy, Surface & Coatings Technology, 202
    (2008)2399–2402
    [72] Y. J. Kim, et. al., “Dielectric Coating for Life Extension of BWR
    Components,”11thInt. Symp.on Environmental Degradation of
    Materials in Nuclear Power Systems –Water Reactors, (2003).
    [73] M. Okamura et al., “Development of SCC Mitigation Method of BWR
    StructuralMaterials by TiO2”, International Conference on Water
    Chemistry of Nuclear ReactorSystems, Germany, 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE