研究生: |
吳忠霖 Wu, Chung Lin |
---|---|
論文名稱: |
鼓膜測試、奈米拉伸、與奈米壓痕量測薄膜機械性質之研究與比較 Study of Bulge Test, Nano Tensile Tester, and Nanoindentation System for Mechanical Properties Measurement of Thin Films |
指導教授: |
葉銘泉
Yip, Ming-Chuen 方維倫 Fang, Weileun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 鼓膜測試 、奈米壓痕 、奈米拉伸測試 |
外文關鍵詞: | Bulge test, Nanoindentation, Nano tensile tester |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鼓膜測試為計算薄膜機械性質之簡易方法之一。本文提出新式鼓膜測試之金屬與氮化矽圓形薄膜製程,成功結合離子反應性深蝕刻與氟化氙氣體等乾蝕刻機制釋放薄膜結構。氮化矽薄膜作為保護金屬薄膜之犧牲層;同時也藉由改變氟化氙氣體之參數製作出氮化矽懸浮薄膜。在應用上,圓形的金、鋁及氮化矽等薄膜成功利用此一方法製作,且透過自行架設之鼓膜系統量測計算薄膜之楊氏模數,並與奈米壓痕之量測比較有近似之結果。
為了瞭解奈米拉伸與奈米壓痕量測系統之不確定度,採用ISO GUN規範計算系統的不確定度。標準質量法碼用來校正系統的力量不確定度。此外,光學干涉儀則用來計算系統測長不確定度。此研究可作為在執行薄膜機械性質量測系統不確定度之基礎。更進一步,透過經校正之測試系統研究聚二甲基矽氧烷與奈米碳管複合薄膜之靜態與動態機械性質。為避免團聚效應,透過超音波儀器攪拌複合材料,利用經校正之最大力量為500 mN與行程位移150 mm之奈米拉伸量測系統進行薄膜材料機械性質之量測。複合薄膜動態機械性質如儲存模數與損耗模數亦能藉由此系統獲得,儲存模數隨著碳管含量與頻率增加而提高。最後,奈米壓痕系統用來量測聚二甲基矽氧烷與其結合奈米碳管之複合薄膜機械性質,利用奈米拉伸與壓痕量測複合薄膜之楊氏模數增量有近似之結果。
The bulge test is a convenient approach to determine the thin film mechanical properties. This study presents
a fabrication process to prepare the circular membrane made of metal as well as dielectric films for bulge test. The process successfully combines the dry etching of DRIE and XeF2 to release the test metal films. The Si3N4 film is used to protect the metal layers during the release process. By changing the recipe of XeF2 etching, the circular Si3N4 test membrane can also be fabricated. In applications, the circular membranes of Al, Au, and Si3N4 films were successfully prepared using the present approach. By using these specimens, the bulge test designed in this work was used to determine the thin film Young's modulus. The results by the bulge test show the similar trend with the results obtained by nanoindentation test.
To find out the measurement ability of force and displacement of nano tensile tester and nanoindentation system, we adopted the method suggested in ISO GUN to calculate the uncertainty of this system. The standard weights are used to calibrate the force of the testing system. In addition, an optical method is adopted to evaluate the displacement uncertainty of the system.
This research can be used as the basis for calculating measurement uncertainty in performing material tests. Moreover, this study is to investigate the static and dynamic mechanical properties of polydimethylsiloxane (PDMS) and the mixture of PDMS and carbon nanotubes.
The PDMS/CNTs nanocomposites were stirred by an ultrasonic instrument to prevent agglomerations. A calibrated nano tensile tester was adopted in this testing system with maximum load of 500 mN and crosshead extension of 150 mm. The dynamic properties of PDMS/CNTs nanocomposites such as storage and loss modulus can be obtained by this system. The storage modulus increased with the CNTs content and also with the higher frequencies. Finally, the nanoindentation measurement system was employed to characterize the mechanical properties of PDMS and PDMS/CNTs. The increase of Young’s modulus by nanoindentation test has the similar trend with the results obtained by the tensile test method.
1.R. P. Feynman, “There’s plenty of room at the bottom,” Journal of Microelectromechanical System, Vol.1, No.1, March 1992
2.W. N. Findley, J. S. Lai and K. Onaran, “Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity,” North-Holland Publishing Company, 1976
3.H. O. Fuch and R. I. Stephens, “Metal fatigue in engineering,” John Willy and Sons, New York, 1980
4.W. D. Nix, “Mechanical properties of thin films,” Metallurgical Transactions A, Vol.20A, No.11, pp.2217-2245, 1989
5.J. A. Schweitz, “Mechanical characterization of thin films by micromechanical techniques,” MRS Bulletin, Vol.17, No.7, pp.34-45, 1992
6.R. P. Vinci and J. J. Vlassak, “Mechanical behavior of thin films,” Annual Review of Materials Science, Vol.26, pp.431-462, 1996
7.A. Llzhofer, H. Schneider and C. Tsakmakies, “Tensile testing device for microstructured specimens,” Microsystem Technologies, Vol.4, pp.46-50, 1997
8.T. Yi and C. J. Kim, “Measurement of mechanical properties for MEMS materials,” Measurement Science and Technology, Vol.10, pp.706-716, 1999
9.T. Yi, L. Li and C. J. Kim, “Microscale material testing of single crystalline silicon : Process effects on surface morphology and tensile strength,” Sensors and Actuators A, Vol.83, pp.172-178, 2000
10.J. W. Beams, “Mechanical properties of thin films of gold and silver,” Structure and Properties of Thin Films, (edited by C. A. Neugebauer), Wiley and Sons, New York. pp.183-192, 1959
11.W. M. C. Yang, T. Tsakalakos and J. E. Hilliard, “Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils,” Journal of Applied Physics, Vol.48, Issue.3, pp.876-879, 1977
12.M. K. Small and W. D. Nix, “Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films,” Journal of Materials Research, Vol.7, pp.1553-1563, 1992
13.M. K. Small, B. J. Daniels, B. M. Clemens and W. D. Nix, “The elastic biaxial modulus of Ag-Pd multilayered thin films measured using the bulge test,” Journal of Materials Research, Vol.9, pp.25-30, 1994
14.A. Karimi, O. R. Shojaei, T. Kruml and J. L. Martin, “Characterisation of TiN thin films using the bulge test,” Thin Solid Films, Vol.308-309, pp.334-339, 1997
15.K. E. Peterson and C. R. Guarnieri, “Young’s modulus measurement of thin films using micromechanics,” Journal of Applied Physic, Vol.50, pp.6761-6766, 1979
16. L. M. Zhang, D. Uttamchandani and B. Culshaw, “Measurement of mechanical properties of silicon microresonators,” Sensors and Actuators A, Vol.29, pp.79-84, 1991
17. L. Kiesewetter, J. M. Zhang, D. Houdeau and A. Stecknborn, “Determining of Young’s moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, Vol.35, pp.153-159, 1992
18.D. Herman, M. Gaitan and D. DeVoe, “MEMS test structures for mechanical characterization of VLSI thin films,” Proceedings of SEM Annual Conference on Experimental and Applied Mechanics, Portland Oregon, 4-6 June 2001
19.H. C. Tsai and W. Fang, “Determining the Poisson’s ratio of thin film materials using resonant method,” Sensors and Actuators A, Vol.103, pp.377-383, 2003
20.W. N. Sharpe, Bin Yuan and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, Vol.6, issue.3, pp.193-199, September 1997
21.J. Bagdahn, W. N. Sharpe and O. Jadaan, “Fracture strength of polysilicon at stress concentrations,” Journal of Microelectromechanical Systems, Vol.12, pp.302-312, June 2003
22.T. Tsuchiya, O. Tabata, J. Sakata and Y. Taga, “Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, Vol.7, pp.106-113, March 1998
23.T. Tsuchiya, A. Inoue and J. Sakata, “Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films,” Sensors and Actuators A, Vol.82, pp.286-290, 2000
24.N. Barbosa, III, R. R. Keller, D. T. Read, R. H. Geiss and R. P. Vinci, “Comparison of electrical and microtensile evaluations of mechanical properties of an aluminum film,” Metallurgical and materials transactions A, Vol.38, No.13, pp. 2160-2167, 2007
25.E. Philofsky, K. Ravi, E. Hall and J. Black, “Surface reconstruction of aluminum metallization a new potential wearout mechanism,” 9th Ann. Reliability Physics Symposium, IEEE, New York, NY, pp.120-128, 1971
26.R. R. Keller, R. Monig, C.A. Volkert, E. Arzt, R. Schwaiger and O. Kraft, “Interconnect failure due to cyclic loading,” American Institute of Physics (AIP) Conference Proceeding, Melville, NY, Vol.612, pp.119-132, 2002
27.C. Malhaire, M. Ignat, K. Dogheche, S. Brida, C. Josserond and L. Debove, “Realization of thin film specimens for micro tensile tests,” The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, pp.623-626, 10-14 June 2007
28.M. F. Doerner and W. D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” Journal of Materials Research, Vol.1, No.4, pp.601-609, 1986
29.W. C. Oliver and G. M. Pharr. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol.7, No.6, pp.1564-1583, 1992
30.G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Materials Science and Engineering A., Vol.253, pp.151-159, 1998
31.W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation : Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol.19, No.1, Jan 2004
32.G. L. Pearson, W. T. Read Jr and W. L. Feldmann, “Deformation and fracture of small silicon crystals,” Acta Metallurgica, Vol.5, pp.181-191, 1957
33.L. I. Maissel and M. H. Francombe, “An introduction to thin films,” Gordon and Breach Science Publishers, New York, pp.199-215, 1973
34.S. Johansson, J. A. Schweitz, L. Tenerz and J. Tir´en, “Fracture testing of silicon microelements in situ in a scanning electron microscope,” Journal of Applied Physics, Vol.63, pp.4799-4803, 1988
35.C. Serre , A. P. Rodriguez, J. R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope,” Sensors and Actuators, Vol.74, pp.134-138, 1999
36.K. Sato, M. Shikida, M. Yamasaki and T. Yoshioka, “Micro tensile-test system fabricated on a single crystal silicon chip,” Proc. IEEE 9th Int. Workshop on Micro Electro Mechanical Systems (MEMS’96), San Diego, CA, USA, pp.360-364, 11-15 February 1996
37.T. Ando, M. Shikida and K. Sato, “Tensile mode fatigue testing of silicon films as structural materials for MEMS,” Sensors and Actuators A, Vol.93, No.1, pp.70-75, 2001
38.R. Ballarini, R. L. Mullern, H. Kahn and A. H. Heuer, “The Fracture toughness of polysilicon microdevices,” Proceeding of Microelectro- mechanical Structures for Materials Research, Materials Research Society Spring Meeting, San Francisco, CA, Vol.518, pp.33-38, April 1998
39.W. V. Arsdell and S. B. Brown, “Crack growth in polysilicon MEMS,” Proceeding of MEMS, ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, Vol.66, pp.267-272, November 1998
40.M. A. Haque and M. T. A. Saif, “Microscale materials testing using MEMS actuators,” Journal of Microelectromechanical Systems, Vol.10, pp.146-152, 2001
41.M. A. Haque and M. T. A. Saif, “A review of MEMS-Based microscale and nanoscale tensile and bending testing,” Society for Experimental Mechanics, Vol.43, pp.248-255, 2003
42.Y. Zhu, F. Barthelat, P.E. Labossiere, N. Moldovan and H.D. Espinosa, “Nanoscale Displacement and Strain Measurement,” 2004 SEM Annual Conference, pp.155-158, 2004
43.M. T. Lin, C. J. Tong and C. H. Chiang, “Design and Development of Sub-micro scale specimens with electroplated structures for the microtensile testing of thin films,” Microsystem Technologies, Vol.13, No.11-12, pp.1559-1565, 2007
44.R. Liu, H. Wang, X. Li, G. Ding and C. Yang, “A micro-tensile method for measuring mechanical properties of MEMS materials,” Journal of Micromechanics and Microengineering, Vol.18, 2008
45.D. Tabor: The Hardness of Metals, Clarendon Press, Oxford, United depending upon location and orientation of the inclusion. In. Kingdom, 1951
46.H. Hertz, “Ueber die beruhrung fester elastischer korper,”Journal für die Reine und Angewandte Mathematik, pp.156-171, 1881
47.I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” International Journal of Engineering Science, Vol.3, pp.47-57, 1965
48.P. J. Burnett and T. F. Page, “Surface softening in silicon by ion implantation,” Journal of Materials Science, Vol.19, No.3, pp.845-860, 1984
49.P. M. Sargent, “Use of the indentation size effect on microhardness of materials characterization,” Microindentation Techniques in Materials Science and Engineering, STP 889, pp.160-174, ASTM, Philadelphia, 1986
50.P. J. Burnett and D. S. Rickerby, “The mechanical properties of wear resistant coating I : Modeling of hardness behavior,” Thin Solid films, Vol.148, pp.41-50, 1987
51.P. J. Burnett and D. S. Rickerby, “The mechanical properties of wear resistant coating II : Experimental studies and interpretation of hardness,” Thin Solid films, 148, 51-65, 1987
52.H. Gao, C. H. Chiu and J. Lee, “Elastic contact versus indentation modeling of multi-layered materials,” International Journal of Solids and Structures, Vol.29, No.20, pp.2471-2492, 1992
53.R. B. King, “Elastic analysis of some punch problems for layered medium,” International Journal of Solids and Structures, Vol.23, pp.1657-1664, 1987
54.G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research,Vol.7, pp.613-617, 1992
55.J. Mencik, D. Munz, E. Quandt, and E. R. Weppelmann, “Determination of elastic modulus of thin film layers using nanoindentation,” Journal of Materials Research, Vol.12, pp.2475-2484, 1997
56.N. X. Randall and C. Julia-Schmutz, “Evaluation of contact area and pile-up during the nanoindentation of soft coatings on hard substrates,” Material Research Society Symposium Proceeding, Vol.522, pp.21-26, 1998
57.X. Chen and V. Vlassak, “Numerical study on the measurement of thin film mechanical properties by means of nanoindentation,” Journal of Materials Research, Vol.16, No.10, October 2001
58.N. Chollacoop, L. Li and A. Gouldstone, “Errors in resolved modulus during nano-indentation of hard films on soft substrates: A computational study,” Materials science and Engineering A, Vol.423, pp.36-40, 2006
59.K. Herrmann K, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche and R. Seemann,“Progress in determination of the area function of indenters used for nanoindentation,” Thin Solid Films, Vol.377, pp.394-400, 2000
60.T. Ohmura, S. Matsuoka, K. Tanaka, and T. Yoshida, “Nanoindentation load displacement behavior of pure face centered cubic metal thin films on a hard substrate,” Thin Solid films, Vol.385, pp.198-204, 2001
61.H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Materials Science and Engineering A, Vol.435-436, pp.453-459, 2006
62.G. Fu and L. Cao, “On the fundamental relations used in the analysis of nanoindentation data,” Materials Letters, Vol.62, pp.3063-3065, 2008
63.Customer care kit, Nanoindentation, Agilent Technologies (MTS Nano Instrument Innovation Center)
64.J. S. Hsu, S. J. Chen, H. C. Lu, S. S. Pan, G. J. Wu, C. L. Wu and C. F. Tuan, “Uncertainty evaluation of modulus and hardness for the nanoindentation measurement system,” Hardmeko 2007, Tsukuba Japan, 19-21 November 2007
65.H. Hencky, “Zeitschrift für Mathematik und Physik, ” Vol.63, pp.311-317, 1915
66.J. J. Vlassak, “New experimental techniques and analysis methods for the study of the mechanical properties of materials in small volumes,” Ph.D. Dissertation, Stanford University, 1994
67.S. Timoshenko and S. W. Krieger, “Theory of plates and shells, 2 ed., ” McGraw-Hill, New York, 1959
68.P. Lin, “The in-situ measurement of mechanical properties of multi layer coatings,” Ph.D. Dissertation, Massachusetts Institute of Technology, 1990
69.H. Itozaki, “Mechanical properties of composition modulated copper-palladium foils,” Ph.D Dissertation, Northwestern University, 1982
70.M. K. Small and W. D. Nix, “Use of the bulge test in measuring the mechanical properties of thin films,” Ph.D. Dissertation, Stanford University, 1992
71.J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, Vol.7, No.12, pp.3242-3249, 1992
72.H. Dannenberg, “Measurement of adhesion by a blister method,” Journal of Applied Polymer Science, Vol.5, No.14, pp.125-134, 1961
73.A. N. Gent and L. H. Lewandowski, “Blow-off pressures for adhering layers,” Journal of Applied Polymer Science, Vol.33, pp.1567-1577, 1987
74.J. A. Hinkley, “A blister test for adhesion of polymer films to SiO,” Journal of Adhesion, Vol.16, pp.115-125, 1983
75.M. G. Allen and S. D. Senturia, “Analysis of critical debonding pressures of stressed thin films in the blister test,” Journal of Adhesion, Vol.25, pp.303-313, 1988
76.D. Armani and C. Liu, “Re-configurable fluid circuits by PDMS elastomer micromachining,” 12th International Conference on MEMS, MEMS 99, pp.222-227, Orland, 1998
77.M. A. Unger and H. P. Chou, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol.288, pp.113-116, 2006
78.J. S. Go and S. Shoji, “A disposable, dead volume-free and leak-free in-plane PDMS microvalve,” Sensor and Actuators, pp.438-444, 2004
79.M. Agarwall, R. A. Gunasekaran and P. Coane, “Polymer-based variable focal length microlens system,” Journal of Micromechanics and Microengineering, Vol.14, pp.1665-1673, 2004
80.S. Camou, H. Fujita and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip, Vol.3, pp.40-45, 2003
81.S. Li and S. Chen, “Polydimethylsioxane fluidic interconnects for Microfluidic Systems,” IEEE Transaction on Advanced Packaging, Vol.26, pp.242-247, 2003
82.B. H. Jo, M. Linda and V. Lerberghe, “Three-dimensional micro-channel fabrication in polydimethylsioxane (PDMS) elastomer,” Microelectromechanical Systems, Vol.9, pp.76-81, 2000
83.S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol.354, pp.56-58, 1991
84.J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. Burnham and L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Physical Review Letters, Vol.82, pp.944-947, 1999
85.P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes,” Science, Vol.283, No.5407, pp.1513-1516, 1999
86.O. Lourie and H. D. Wagner, “Effect of thermomechanical stress on the Raman spectrum of embedded carbon nanotubes,” Journal of Materials Research, Vol.13, pp.2418-2422, 1998
87.S. Xie, W. Li, Z. Pan, B. Chang and L. Sun, “Mechanical and physical properties on carbon nanotube,” Journal of Physics and Chemistry of Solids, Vol.61, No.7, pp.1153-1158, 2000
88.A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol.62, pp.1993-1998, 2002
89.N. H. Tai, M. K. Yeh and J. H. Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Carbon, Vol.42, pp.2774-2777, 2004
90.D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, Vol.76, pp.2868-2870, 2000
91.M. A. Lopez Manchado, J. Biagiotti, L. Valentini and J. M. Kenny, “Dynamic mechanical and raman spectroscopy studies on the interaction between single-walled carbon nanotubes and natural rubber,” Journal of Applied Polymer Science, Vol.92, pp.3394-3400, 2004
92.M. A. Atieh, N. Girun, F. R. Ahmadun, C. T. Guan, A. S. Mahdi and D. R. Baik, “Multi-wall carbon nanotubes/natural rubber,” Journal of Nanotechnology, Vol.1, pp.1-11, 2005
93.J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A.H. Windle, “Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties,” Polymer, Vol.40, No.21, pp.5967-5971, 1999
94.C. S. Woo., C. H. Lim, C. W. Cho., B. Park, H. Ju, D. H. Min, C. J. Lee and S. B. Lee, “Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly(dimethyl siloxane) mold transfer,” Microelectronic Engineering, Vol.84, pp.1610-1613, 2007
95.J. Paul, S. Sindhu, M. H. Nurmawati and S. Valiyaveettil, “Mechanics of prestressed polydimethylsiloxane-carbon nanotube composite,” Applied Physics Letters, Vol.89, pp.184101-184103, 2006
96.E. Guth, “Theory of filler reinforcement,” Journal of Applied Physics, Vol.16, pp.20-25, 1945
97.J. C. Halpin, “Stiffness and expansion estimates for oriented short fiber composites,” Journal of Composite Materials, Vol.3, pp.732-734, 1969
98.L. Bokobza, “Multiwall carbon nanotube elastomeric composites: A review,” Polymer, Vol.48, pp.4907-4920, 2007
99.Information About High Technology Silicone Materials, Handbook of Dow Corning
100.Customer Care Kit, Nano bionix universal testing system, Agilent Technologies (MTS Nano Instrument Innovation Center)
101.ISO, Guide to the expression of uncertainty in measurement (corrected and reprinted, 1995)
102.C. L. Wu, H. C. Lin, C. H. Huang, M. C. Yip and W. Fang, “Mechanical properties of PDMS/CNTs nanocomposites,” Materials Research Society Symposium Proceedings, Vol.1056, 2008
103.E. E. Gdoutos, “Fracture of nano and engineering materials and structures,” Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, Springer Netherlands, 3-7 July 2006
104.C. L. Wu, H. C. Lin, J. S. Hsu, M. C. Yip and W. Fang, “Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotubes nanocomposites,” Thin Solid Films, 2009 (SCI, Accepted)
105.G. Lin, B. Eyre and K. Pister, “Bulk micromachining of standard CMOS using silicic acid added to TMAH for aluminum passivation,” UCLA MEMS Laboratory Internal Report, June 1995