研究生: |
王志祐 |
---|---|
論文名稱: |
加熱輔助超音波奈米轉印技術 Heating - Assisted for Ultrasonic Nanoimprint Lithography |
指導教授: |
陳榮順
林建宏 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 超音波奈米轉印技術 、加熱輔助 、田口法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功地發展加熱輔助超音波奈米轉印技術,藉由加熱輔助方式解決超音波奈米轉印技術上,超音波振動產生之熱源無法即時傳遞之問題。因為超音波施加的時間非常短暫,而且超音波振動產生的熱影響區域過於集中,加熱輔助可以提昇轉印機材本身之初始溫度,避免短暫時間超音波振動的加熱能量不足,亦可以降低壓印力量並且使轉印光阻完全填滿模仁凹穴中。
此外,本研究利用田口法的原理針對轉印品質與轉印後表面平均粗糙度進行品質分析。所設計控制因子為加熱盤設定溫度、等待加熱時間、第二段轉印力量及等待脫模時間,搭配L9直交表進行實驗,得到最佳水準組合為加熱盤設定溫度40 ℃、等待加熱時間1分鐘、轉印力量110 kgf和等待脫模時間3分鐘。利用原子力學顯微鏡量測剖面圖並計算PET材料填入矽模仁凹穴填滿率為96.40%,此結果與田口法計算預期結果相吻合,其誤差百分比為1.58%,轉印後圖案之表面平均粗糙度為6.27 nm。
關鍵字:超音波奈米轉印技術、加熱輔助、田口法
[1]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters, vol. 67, no. 21, pp. 3114-3116, 1995.
[2]J. Haisma, M.Verheijen, K. Heuvel, and J. Berg, “Mold-assisted nanolitograpghy: a process for reliable pattern replication,” The Journal of Vacuum Science and Technology B, vol. 14, no. 6, pp. 4124-4128, 1996.
[3]Y. Xia and G. M. Whitesides, “Soft lithgrophy,” Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
[4]S. Y. Chou, C. Keimel, and J. Gu, “Ultrafast and direct imprint nanostructures in silicon,” Nature, vol. 417, pp. 835-837, 2002.
[5]林建宏,“超音波奈米轉印技術”,國立清華大學博士論文,民國九十六年。
[6]H. Schulz, D. Lyebyedyev, and H. C. Scheer, “Master replication into thermosetting polymers for nanoimprinting,” Journal of Vacuum Science and Technology B, vol. 18, no. 6, pp. 3582-3585, 2000.
[7]H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography,” Microelectronic Engineering, vol. 83, no. 2, pp. 323-327, 2006.
[8]N. Bogdanski, M. Wissen, S. Möllenbeck, and H. C. Scheer, “Thermal imprint with negligibly low residual layer,” Journal of Vacuum Science and Technology B, vol. 24, no. 6, pp. 2998-3001, 2006.
[9]H. C. Scheer, N. Bogdanski, M. Wissen, and S. Möllenbeck, “Impact of glass temperature for thermal nanoimprint,” Journal of Vacuum Science and Technology B, vol. 25, no. 6, pp. 2392-2395, 2007.
[10]C. H. Lin, R. T. Zheng, and R. Chen, “Ultrasonics for Nanoimprint Lithography,” The Third International Conference on Nanoimprint Nanoprint Technology, Vienna, Austria, 1-3 Dec., 2004.
[11]C. H. Lin and R. Chen, “Ultrasonic nanoimprint lithography: a new approach to nanopatterning,” Journal of Microlithography Microfabrication and Microsystems, vol. 5, no. 1, pp. 011003-1-011003-6, 2006.
[12]S. J. Liu and Y. T. Dung, “Hot embossing precise structure onto plastic plate by ultrasonic vibration,” Polymer Engineering and Science, vol. 45, pp. 915-925, 2005.
[13]H. Mekaru, O. Nakamura, O. Maruyama, R. Maeda, and T. Hattori, “Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration,” Microsystem Technologies, vol. 13, no. 3, pp. 385-391, 2007.
[14]H. Mekaru, T. Noguchi, H. Goto, and M. Takahashi, “Nanoimprint Lithography Combined with Ultrasonic Vibration on Polycarbonate,” Japanese Journal of Applied Physics, vol. 46, no. 9B, pp. 6355-6362, 2007.
[15]H. Mekaru and M. Takahashi, “Ultrasonic Nanoimprint on Poly(ethylene terephthalate) at Room Temperature,” Japanese Journal of Applied Physics, vol. 47, no. 6, pp. 5178-5184, 2008.
[16]H. W. Yu, C. H. Lee, P. G. Jung, B. S. Shin, J. H. Kim, K. Y. Hwang, and J. S. Ko, “Polymer microreplication using ultrasonic vibration energy,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 8, pp. 021113-1-021113-7, 2009.
[17]H. Mekaru and M. Takahashi, “Ultrasonic nanoimprint on engineering plastic” Journal of Vacuum Science & Technology A vol. 27, no. 4, pp. 785-792, 2009.
[18]林逸昕,“應用紫外光成型奈米壓印製程於可撓式基板”,國立清華大學碩士論文,民國九十七年。
[19]蘇朝墩,產品穩建設計,中華民國品質學會,民國八十六年。