研究生: |
吳璟賢 Wu, Jing Sian |
---|---|
論文名稱: |
電池壽命的EOP推論及其最適實驗配置問題 End of performance prediction of Lithium-ion battery and its optimum allocation design |
指導教授: |
曾勝滄
Tseng, Sheng Tsaing |
口試委員: |
葉百堯
彭健育 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 鋰電池 、壽命推估 、最適實驗配置問題 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著行動電子產品 (如筆電、手機等) 的迅速發展,鋰電池 (lithium-ion battery) 在此類電子產品皆扮演極為重要的電源供應角色。因此如何精確地推估鋰電池的壽命及探討其最適試驗配置是製造商極為重要之研究課題。本研究首先將電池從充電到放電之回充系統視為重現事件 (recurrent event),同時由於電池的性能會隨著使用次數的增加而逐漸下降,故本文採用Lindqvist, et al. (2003) 提出的trend renewal process (TRP) 模型來探討電池壽命之相關推論問題。具體而言,本研究先建構出TRP模型之概似函數 (Likelihood function),並推導出TRP模型中未知參數的最大概似估計量 (MLE)。最後,配合 BAN Property 及Delta Method可獲得電池平均壽命之點估計及其區間估計。除此之外,本研究亦探討如何決定受試電池之最適樣本數,及其最適實驗測試週期數,方可在給定的試驗成本限制下,獲得電池平均壽命較精確的估計值。
Rechargeable batteries are critical components for the performance of portable electronics and electric vehicles. The long term health performance of rechargeable batteries is characterized by state of health which can be quantified by end of performance (EoP). Focusing on EoP prediction, this thesis first proposed a trend renewal process (TRP) model to address this decision problem. Specifically, we derive an approximate formula for EoP and derive its 95% confidence interval. The proposed model is also applied to analyze a rechargeable battery dataset. Finally, we also use a simulation study to address the issue of the optimal design of TRP model, which includes the determinations of the test samples (units) and its corresponding measurement times. The results demonstrate that the prediction performance of the proposed procedure is very robust even when the process parameters in TRP model are not precisely estimated.
[1] Cox, D.R., and Isham, V. (1980), Point Processes, London: Chapman and Hall.
[2] He, W., Williard, N., Osterman, M., and Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196 (23), pp. 10314-10321.
[3] Kozlowski, James D. (2003). Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques. Aerospace Conference, 2003. Proceedings. 2003 IEEE (Vol. 7, 3257-3270). IEEE.
[4] Lindqvist, B. H., G. Elvebakk, and Knut Heggland. (2003). The trend-renewal process for statistical analysis of repairable systems. Technometrics, 45 (1), pp. 31-44.
[5] Lindqvist, B. H. (2006). On the statistical modeling and analysis of repairable systems. Statistical science, pp. 532-551.
[6] Long, B., Xian, W., Jiang, L., and Liu, Z. (2013). An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries. Microelectronics Reliability, 53 (6), pp. 821-831.
[7] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, John Wiley and Sons, New York.
[8] Micea, M. V., Ungurean, L., Carstoiu, G. N., and Groza, V. (2011). Online state-of-health assessment for battery management systems. IEEE Transactions on Instrumentation and Measurement, 60(6), pp. 1997-2006.
[9] Nelson, W. (1990), Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, New York: John Wiley and Sons.
[10] Ross, S. M. (2014). Introduction to probability models. 10th Edition, Academic Press, New York.
[11] Saha, B., Goebel, K., and Christophersen, J. (2009). Comparison of prognostic algorithms for estimating remaining useful life of batteries. Transactions of the Institute of Measurement and Control, 31, pp. 293-308.
[12] Xing, Y., Ma, E. W., Tsui, K. L., and Pecht, M. (2013). An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectronics Reliability, 53(6), pp. 811-820.