簡易檢索 / 詳目顯示

研究生: 廖豐蝌
Feng-Ko Liao
論文名稱: 手機定位估測在嚴重無線環境中使用根據模糊理論IMM和資料整合
Mobile Location Estimator in Rough Wireless Environment Using Fuzzy-Based IMM and Data Fusion
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 1冊(54頁)
中文關鍵詞: 資料整合根據模糊理論為基礎IMM直射可見光非直射可見光
外文關鍵詞: Data Fusion, Fuzzy-based IMM, LOS, NLOS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個研究中,手機定位估測問題以資料整合為基礎在嚴重無線環境中可以被形成如同非線性濾波器問題在直射可見光(LOS)或非直射可見光(NLOS)選擇模式。資料整合是用接收信號強度量測信號和時間抵達量測信號所組合合成一個量測信號,這可使我們所量測到信尋更充裕去估測手機定位估測。一般在無線傳輸中,有直射可見光(LOS)或非直射可見光(NLOS)兩種電磁波。後者是因為波傳過程中沒有直接直射波,這將造成我們手機定位估測上不精切。在上述這些問題中,我們將遇到非線性選擇模式問題。以下我們將提起一個整合方法去解結這問題。模糊濾波器和互相反應多個模型(IMM)技術可以被應用去處理非線性多個模式濾波器問題。模糊濾波器被提起去內插幾各線性濾波器去處理非線性狀態估測問題在不同運用區域和IMM技術被使用去平穩選擇估測在LOS和NLOS之中被依賴可能性函數。我們提起方法整合技術資料整合,模糊濾波器和IMM方法去改善手機定位估測精切度在嚴重無線環境中。論文最後,一個模擬例子在一個都市街道通信傳輸環境中可以被使用去說明設計程序和去證實我們提起方法的精切度上性能。


    In this study, data fusion-based mobile location estimation problem in the rough environment is formulated as an augmented nonlinear filtering problem under line-of-sight(LOS) and non line-of-sight(NLOS) switching modes. Fuzzy filtering and interactive multiple model (IMM) scheme are employed to treat the nonlinear multiple mode filtering problem. Fuzzy filter is proposed to interpolate several linear filters to treat the nonlinear state estimation problem at different operation regions and IMM scheme is used to smooth the switching estimation between LOS and NLOS modes based on the likelihood function. The proposed method integrates the technique of data fusion, fuzzy filtering and IMM scheme to improve the accuracy of mobile location estimation in rough wireless environment. Finally, a simulation example in an urban radio propagation environment is given to illustrate the design procedure and to confirm the performance of the proposed method.

    1 Introduction 2 System Model And Architecture 2.1 System Model 2.2 Architecture of the Proposed Mobile Location Estimator 3 Fuzzy-based IMM Smoother 3.1 State Space Signal Model 3.2 State Estimation Using Fuzzy-based IMM Smoother 3.3 Mobile Location Calculation 3.4 Effect for Performance Prediction of the Proposed Fuzzy-based IMM Smoother 3.5 The Complexity of the Proposed Fuzzy-based IMM algorithm 4 Simulation Results 5 Conclusion Bibliography

    [1] K. J. Krizman, T. E. Biedka, and T. S. Rappaort, “Wireless position location: fundamentals, implementation strategies, and source of error,”IEEE Vehicular Technology Conf., vol.2, pp. 919-923, May 1997.
    [2]T. S. Rappaport, J. H. Reed, and B. D. Woener, ”Position position using wireless communication on highways of the future ” IEEE Communication Magazine, vol. 34, pp.33-41, oct. 1996
    [3]J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Commucations: Is-95 and Third Generation CDMA Applications, Prentice Hall, 1999
    [4]J. C. Chen, C. S. Maa, Y. C. Wang and J. T. Chen, “ Mobile position location using factor graphs“, IEEE Communication Letters, vol.7, no.9, pp.431-433, Sep.2000
    [5]L. Cong and z. Weihua, ”Hybrid TDoA/AoA mobile user location for wideband CDMA cellular systems” IEEE Trans. Wireless Communication, vol.1, pp.439-44 ,1997
    [6]Z. Gu and E. Gunawan, “Radiolocation in CDMA cellular system based on joint angle anjd delay estimation” Wireless Personal Communication, vol.23, no.3, pp.297-309, Dec.2002.
    [7]T. k. Ostmann and A. Bell, “A data fusion architecture for enhanced position estimation in wireless networks” IEEE Communication Letters, vol.5, no.8, pp.343-345, Aug. 2001.
    [8]S. Merigeault, M. Batariere, and J. Patillon, “Data fusion based on neural network for the mobile subscriber location “ Proc. IEEE Fall Vehicular Technology Conf., pp.536-541, sept. 2000.
    [9]N. Thomas, D. Cruickshank, and D. Laurenson, “Performance of a TDOA-AOA hybrid mobile location system”, Proc. Int’l Conf. 3G Mobile communication Technologies, pp.216-220, 2001.
    [10]M. McGuire, K. N. Plataniotis, and A. N. Venetsanopoulos “Data fusion of Power and time measurements for mobile terminal location” IEEE Trans. Mobile Computing, vol.4, no.2, pp.142-153, Mar./Apr. 2005.
    [11]M. P. Wylie,and J. Holtzman, “The non-line of sight problem in mobile location estimation”, IEEE personal Comm. Conf., vol.6, pp.827-831, Oct.1996.
    [12] S. S. Woo, H. R. You, and J. S. Koh, “The NLOS mitigation technique for position location using IS-95 CDMA networks,” IEEE Vehicular Technology Conf., vol. 6, pp. 2556-2560, Sep. 2000.
    [13] J. F. Kiang and C. W. Wu, “NLOS effects on position location techniques,” IEEE Networking, Sensing and Control Conf., vol. 1, pp. 305-308, Mar. 2004.
    [14] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” IEEE Wireless Communications and Networking Conf., vol. 3, pp. 1969-1973, Mar. 2003.
    [15] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Trans. Automat. Contr., vol. 33, no. 8, pp. 780-783, Aug. 1988.
    [16] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 103-123, Jan. 1998.
    [17] J. C. Jr.and G. L. Stuber, “Subscriber location in CDMA cellular networks,” IEEE Tran. Vehicular Technology., vol.47, no.2 pp. 406-416, May 1998.
    [18] S. Haykin, Adaptive Filter Theory, 4th Edition. Prentice-Hall, 2002.
    [19] J. M. Mendel, Lessons In Estimation Theory For Signal Processing, Prentice-Hall, 1995.
    [20] X. Shen, J.W. Mark, and J. Ye, “Mobile location estimation in cellular networks using fuzzy logic,” IEEE Vehicular Technology Conf., vol. 5, pp. 2108-2114, Sep. 2000.
    [21] X. R. LI and Y. Bar-Shalom, “Performance prediction of the interacting multiple model algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 755-771, Jul. 1993.
    [22] F. Gustafsson and F. Gunnarsson., “Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements” IEEE Signal Processing Magazine., vol. 22, no. 4, pp. 41-53, Jul. 2005.
    [23] G. L. Stuber “Principles of Mobile Communication, ” 2nd Edition. Spriger, 2001.
    [24] T. Takagi and M. Sugeno, ”Fuzzy identification of systems and its application to modeling and control” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116-132, Fed. 1985.
    [25] C. S. Tseng and B. S. Chen “ Fuzzy Estimation for a class of nonlinear Discrete-Time Dynamic Systems”, IEEE Trans. Signal Processing, vol. 9, no. 3, pp. 381-392, Jun. 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE