研究生: |
黃佳瑜 Huang, Chia-Yu |
---|---|
論文名稱: |
利用靜息態功能性磁振造影觀察聚焦式超音波神經調控:大鼠腦部模型研究 Noninvasive Neuromodulation Induced by Focused Ultrasound Monitored with Resting State fMRI: A Study on Rat Brain |
指導教授: |
王福年
Wang, Fu-Nien |
口試委員: |
彭旭霞
Peng, Hsu-Hsia 劉浩澧 Liu, Hao-Li |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 聚焦式超音波 、功能性磁振造影 、神經調控 、功能性連結 |
外文關鍵詞: | Focused ultrasound, fMRI, Neuromodulation, Functional connectivity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經調控是近來醫學領域中一項新興的技術,它具有影響人類生活品質的潛力。在本研究中,我們使用聚焦式超音波作為一個非侵入性、穿透力良好和空間定義良好的神經調節工具,並使用靜息態功能性磁振造影來觀察大腦經過刺激後,腦區之間關聯性的變化。我們利用聚焦式超音波刺激大鼠左邊單側的丘腦區腹側後內側和腹側後外側丘腦核(VPM / VPL),並且觀察聚焦式超音波刺激前後的大腦關聯性變化。結果顯示,在超音波刺激後大腦區域之間的關聯性表現出高度相關,並且隨著時間的推移,相關性在三天內有緩慢地下降的趨勢,而且調控效果不僅出現在被刺激的腦區,也出現在與刺激的腦區相關的腦區,這個結果顯示聚焦式超音波引發的神經調控效果似乎能夠透過神經系統的傳導途徑傳遞到其他腦區。在本研究中,聚焦式超音波成功的調控在大腦深部的神經系統,而靜息態功能性磁振造影也成功的觀察到聚焦式超音波引發的神經調控增強了腦區之間的關聯性。
Neuromodulation is an emerging technique in the medical field recently, which has a potential to impact the quality of life. In this study, we proposed to use focused ultrasound as a noninvasive, deep-penetrating, and spatially well-defined modality to modulate the neural activity, and use resting state fMRI to investigate the functionally connectivity after stimulation in the brain. Rats underwent focused ultrasound stimulation targeted unilaterally to the ventral posteromedial and ventral posterolateral thalamic nuclei (VPM/VPL) in the left thalamic region. The distinguishable connectivity change before and after focused ultrasound stimulation was observed. The connectivity among brain regions exhibits hyper-correlated after sonication, and as time proceed, the correlation has a tendency to decline slowly in about 3 days. The results reveal the modulation effect appear not only in the target area but also in the region and correlated with the target region, and it may suggest the impact of FUS induced neuromodulation can transfer via the pathway in the neural system. In this study, our results showed that the FUS can successfully modulate the neural system in the deep brain, and resting-state fMRI demonstrated its ability of detection of enhanced connectivity for monitoring FUS induced neuromodulation.
1. Sakas, D.E., et al., An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology. Acta Neurochir Suppl, 2007. 97(Pt 1): p. 3-10.
2. North, R.B., et al., Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery, 2005. 56(1): p. 98-106; discussion 106-7.
3. Weiner, R.L. and K.L. Reed, Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation, 1999. 2(3): p. 217-21.
4. Volkmann, J., E. Moro, and R. Pahwa, Basic algorithms for the programming of deep brain stimulation in Parkinson's disease. Mov Disord, 2006. 21 Suppl 14: p. S284-9.
5. Güth, W., R. Schmittberger, and B. Schwarze, An Experimental Study of Ultimatum Bargaining. Vol. 3. 1982. 367-388.
6. Fishbein, D.H., et al., Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Brain Res Cogn Brain Res, 2005. 23(1): p. 119-36.
7. Fregni, F., et al., Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry, 2008. 69(1): p. 32-40.
8. Boggio, P.S., et al., Cumulative priming effects of cortical stimulation on smoking cue-induced craving. Neurosci Lett, 2009. 463(1): p. 82-6.
9. Blok, B.F., et al., Different brain effects during chronic and acute sacral neuromodulation in urge incontinent patients with implanted neurostimulators. BJU Int, 2006. 98(6): p. 1238-43.
10. Groves, D.A. and V.J. Brown, Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev, 2005. 29(3): p. 493-500.
11. Dowling, J., Deep brain stimulation: current and emerging indications. Mo Med, 2008. 105(5): p. 424-8.
12. Bystritsky, A., L. Kerwin, and J. Feusner, A pilot study of cranial electrotherapy stimulation for generalized anxiety disorder. J Clin Psychiatry, 2008. 69(3): p. 412-7.
13. Lefaucheur, J.P., Methods of therapeutic cortical stimulation. Neurophysiol Clin, 2009. 39(1): p. 1-14.
14. DeGiorgio, C.M., et al., Trigeminal nerve stimulation for epilepsy: long-term feasibility and efficacy. Neurology, 2009. 72(10): p. 936-8.
15. Burt, T., S.H. Lisanby, and H.A. Sackeim, Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis. Int J Neuropsychopharmacol, 2002. 5(1): p. 73-103.
16. Tyler, W.J., Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist, 2011. 17(1): p. 25-36.
17. Deuschl, G., et al., A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med, 2006. 355(9): p. 896-908.
18. Baker Jr, R.G., A. Marquette, and R.S. Terry Jr, Treatment of motility disorders by nerve stimulation. 1996, Google Patents.
19. Rutecki, P., R.S. Terry Jr, and J.F. Wernicke, Treatment of pain by vagal afferent stimulation. 1994, Google Patents.
20. Benabid, A.L., Method of controlling epilepsy by brain stimulation. 1998, Google Patents.
21. Janicak, P.G., et al., Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. J Clin Psychiatry, 2008. 69(2): p. 222-32.
22. Wassermann, E.M. and T. Zimmermann, Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol Ther, 2012. 133(1): p. 98-107.
23. Salomons, T.V., et al., Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology, 2014. 39(2): p. 488-98.
24. Fry, F.J., H.W. Ades, and W.J. Fry, Production of reversible changes in the central nervous system by ultrasound. Science, 1958. 127(3289): p. 83-4.
25. Gavrilov, L.R., E.M. Tsirulnikov, and I.A. Davies, Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med Biol, 1996. 22(2): p. 179-92.
26. Curie J, C.P., Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus de l’Académie des Sciences. Bulletin de Minéralogie 1880: p. pp. 90-93.
27. Lelong, B., Ions, electrometers, and physical constants: Paul Langevin’s laboratory work on
gas discharges, 1896–1903. 2005: University of California Press.
28. Gruetzmacher, J., Piezoelektrischer Kristall mit Ultraschallkonvergenz. Zeitschrift für Physik, 1935. Volume 96(Issue 5-6): p. pp. 342-349.
29. Akinyemi, B.O., B.R. Adewoye, and T.A. Fakoya, Uterine fibroid: a review. Niger J Med, 2004. 13(4): p. 318-29.
30. Hurwitz, M.D., et al., Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst, 2014. 106(5).
31. Thuroff, S., et al., High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study. J Endourol, 2003. 17(8): p. 673-7.
32. Fishman, P.S., et al., Neurological adverse event profile of magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor. Mov Disord, 2018. 33(5): p. 843-847.
33. Harvey, E.N., The effect of high frequency sound waves on heart muscle and other irritable tissues. Am. J. Physiol, 1929. 91: p. 284-290.
34. Plaksin, M., E. Kimmel, and S. Shoham, Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation. eNeuro, 2016. 3(3).
35. Yang, P.S., et al., Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology, 2012. 65(3): p. 153-60.
36. Tufail, Y., et al., Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 2010. 66(5): p. 681-94.
37. Legon, W., et al., Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci, 2014. 17(2): p. 322-9.
38. Yoo, S.S., et al., Focused ultrasound modulates region-specific brain activity. Neuroimage, 2011. 56(3): p. 1267-75.
39. Mueller, J., et al., Transcranial Focused Ultrasound Modulates Intrinsic and Evoked EEG Dynamics. Vol. 7. 2014.
40. Lee, W., et al., Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep, 2015. 5: p. 8743.
41. Xie, P., et al., Effect of pulsed transcranial ultrasound stimulation at different number of tone-burst on cortico-muscular coupling. BMC Neurosci, 2018. 19(1): p. 60.
42. Lee, W., et al., Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep, 2016. 6: p. 34026.
43. Sharon, D., et al., The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage, 2007. 36(4): p. 1225-35.
44. Legon, W., et al., Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and FMRI. PLoS One, 2012. 7(12): p. e51177.
45. Morgan, J.I. and T. Curran, Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci, 1991. 14: p. 421-51.
46. Shimony, J.S., et al., Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol, 2009. 16(5): p. 578-83.
47. Roy, C.S. and C.S. Sherrington, On the Regulation of the Blood-supply of the Brain. J Physiol, 1890. 11(1-2): p. 85-158 17.
48. Arthurs, O.J. and S. Boniface, How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci, 2002. 25(1): p. 27-31.
49. Huettel, S.A.S., A. W.;McCarthy, G., Functional Magnetic Resonance Imaging 2ed. 2009.
50. Huettel, S.M., Magnetic Resonance, a critical peer-reviewed introduction; functional MRI. 2009.
51. Pauling, L. and C.D. Coryell, The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A, 1936. 22(4): p. 210-6.
52. Hoge, R.D., et al., Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med, 1999. 42(5): p. 849-63.
53. Thulborn, K.R., et al., Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta, 1982. 714(2): p. 265-70.
54. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990. 87(24): p. 9868-72.
55. Kwong, K.K., et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 1992. 89(12): p. 5675.
56. Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995. 34(4): p. 537-41.
57. Lv, H., et al., Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR Am J Neuroradiol, 2018. 39(8): p. 1390-1399.
58. Todd, N., et al., Focused ultrasound induced opening of the blood-brain barrier disrupts inter-hemispheric resting state functional connectivity in the rat brain. Neuroimage, 2018. 178: p. 414-422.
59. Watson, G.P.C., The Rat Brain in Stereotaxic Coordinates. 6th ed. 2005: Elsevier.
60. D. Welch, P., The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. Vol. 15. 1967. 70-73.
61. Hsu, W.Y., et al., Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex, 2015. 69: p. 175-85.
62. Nitsche, M.A., et al., Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol, 2003. 114(4): p. 600-4.
63. Baudrexel, S., et al., Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease. Neuroimage, 2011. 55(4): p. 1728-38.
64. Wu, T., et al., Changes of functional connectivity of the motor network in the resting state in Parkinson's disease. Neurosci Lett, 2009. 460(1): p. 6-10.
65. Tessitore, A., et al., Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 2012. 79(23): p. 2226-32.
66. Bacci, J.J., L. Kerkerian-Le Goff, and P. Salin, Effects of intralaminar thalamic nuclei lesion on glutamic acid decarboxylase (GAD65 and GAD67) and cytochrome oxidase subunit I mRNA expression in the basal ganglia of the rat. Eur J Neurosci, 2002. 15(12): p. 1918-28.
67. Golestani, A.M., et al., Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair, 2013. 27(2): p. 153-63.
68. van Meer, M.P., et al., Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci, 2010. 30(11): p. 3964-72.
69. Li, S., et al., Unilateral thalamic glioma disrupts large-scale functional architecture of human brain during resting state. Neuropsychiatr Dis Treat, 2019. 15: p. 947-956.
70. Spenger, C., et al., Functional MRI at 4.7 tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments. Exp Neurol, 2000. 166(2): p. 246-53.
71. Lazovic, J., et al., Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil, 2005. 17(4): p. 548-56.
72. Narayana, S., et al., Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. J Child Neurol, 2015. 30(9): p. 1111-24.
73. Seewoo, B.J., et al., Resting-state fMRI study of brain activation using low-intensity repetitive transcranial magnetic stimulation in rats. Scientific Reports, 2018. 8(1): p. 6706.
74. Jansma, J.M., et al., fMRI guided rTMS evidence for reduced left prefrontal involvement after task practice. PLoS One, 2013. 8(12): p. e80256.
75. Sokhadze, E.M., et al., Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism. Front Syst Neurosci, 2018. 12: p. 20.
76. Mennemeier, M., et al., Variable changes in PET activity before and after rTMS treatment for tinnitus. Laryngoscope, 2011. 121(4): p. 815-22.
77. Doi, W., et al., c-Fos expression in rat brain after repetitive transcranial magnetic stimulation. Neuroreport, 2001. 12(6): p. 1307-10.
78. King, R.L., J.R. Brown, and K.B. Pauly, Localization of ultrasound-induced in vivo neurostimulation in the mouse model. Ultrasound Med Biol, 2014. 40(7): p. 1512-22.
79. Lee, W., et al., Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci, 2016. 17(1): p. 68.
80. King, R.L., et al., Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol, 2013. 39(2): p. 312-31.
81. Kim, H., et al., Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound. Ultrasound Med Biol, 2012. 38(9): p. 1568-75.
82. Guo, H., et al., Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron, 2018. 98(5): p. 1020-1030 e4.
83. Min, B.K., et al., Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci, 2011. 12: p. 23.
84. Daniels, D., et al., Focused Ultrasound-Induced Suppression of Auditory Evoked Potentials in Vivo. Ultrasound Med Biol, 2018. 44(5): p. 1022-1030.
85. Deffieux, T., et al., Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol, 2013. 23(23): p. 2430-3.
86. Legon, W., et al., Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Scientific Reports, 2018. 8(1): p. 10007.