簡易檢索 / 詳目顯示

研究生: 吳浩平
Wu, Hau-Ping
論文名稱: 折繞複合光學系統應用於線型雷射光束加工系統之研究
Application of Refractive/Diffractive Hybrid Optical Element for Line Beam Laser Processing System
指導教授: 陳政寰
Chen, Cheng-Huan
口試委員: 黃乙白
盧廷昌
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 53
中文關鍵詞: 線型雷射光束雷射加工系同調光干涉
外文關鍵詞: Line laser beam, laser processing system, coherent light interference
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線型雷射加工在諸多面型模組如主動矩陣顯示與太陽能面板製程上逐漸扮演重要角色,係因線型光束經掃描後可獲得整體面型加工之要求,而其線截面之微細程度又可滿足面型裝置上個別精微元件加工之需求。目前已有市售之線型雷射加工系統,但多價格昂貴,且因應個別加工需求之參數調校多仰賴原廠,自主性低。開發具技術自主性與價格適中之線型雷射加工系統對國內正逐漸成長之製程設備產業與規模已龐大之面型裝置相關產業均有極大之效益。多數市售線型雷射加工系統使用透鏡陣列獲致長線方向之均勻度,係因此方式之相對其他方案可實現性高。但此方式多使用於多模雷射,而不適宜單模雷射之主要原因為高同調光之干涉行為干擾線光束之均勻度。
    本文應用折繞複合光學模組,利用高速轉動全像擴散片配合聚焦與準直元件,成功解決干涉現象造成之線型光束均勻度問題而將透鏡陣列為基礎之線型雷射系統應用於同調性極高之低M2雷射,並配合Etendue概念,對動作機制建立物理模型,成為一具系統性之創新技術。目前系統使用M2小於1.8之532nm雷射光源,獲致均勻度達90%、長度100mm、聚焦線寬50um之線型雷射。
    同時延續已驗證可行之構想,為了使系統效能更加提升,自行研發本技術方案之關鍵元件,一維微小發散角擴散片。透過MEMS蝕刻技術設計製造出角度僅3度之一維擴散片並成功應用於線型雷射系統中。


    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目標 1 第二章 雷射光束整形相關技術探討 4 2.1 雷射光束整形文獻回顧 4 2.1.1 光罩式元件 4 2.1.2 繞射式元件 5 2.1.3 反射式元件 6 2.1.4 折射式元件 7 2.1.5 干涉消除元件 9 2.2 線型雷射光束相關產品 11 2.2.1 COHERENT 12 2.2.2 德國Limo 13 2.2.3 Sumitomo Heavy Industries Mechatronics 13 2.2.4 Tamarack Scientific 14 第三章 相關光學原理 15 3.1 波動光學 15 3.1.1 繞射(Diffraction)與干涉(Interference) 15 3.1.2 Gaussian beam and wave propagation 17 3.1.3 同調性(Coherence) 19 3.2 相關參數 20 3.2.1 同調長度(Coherence length) 20 3.2.2 M2-factor 20 3.2.3 Etendue 21 第四章 光學系統設計與實驗 22 4.1 光束均勻器之設計選擇 23 4.1.1 光路與原理 23 4.1.2 模擬與實驗 26 4.2 干涉消除裝置之建置 28 4.2.1 透鏡組干涉消除裝置 29 4.2.1.1 實驗 29 4.2.1.2 光路分析 32 4.2.2 柱狀透鏡組干涉消除裝置 35 4.2.3 元件加工 40 4.2.4 震動式一維擴散片干涉消除裝置 42 4.2.4.1 製程與結構設計 42 4.2.4.2 實驗 46 第五章 結論與未來工作 51 參考文獻 52

    [1] F. M. Dickey, S. C. Holswade, “Laser Beam Shaping: Theory and Techniques”, Marcel Dekker, Inc., New York, in print.
    [2] M. R. Taghizadeh, P. Blair, K. Balluder, A.J. Waddie, P. Rudman, N. Ross, ‘‘Design and fabrication of diffractive elements for laser material processing applications’’ Optics and Lasers in Engineering 34 (2000) 289-307
    [3] F. M. Dickey, S. C. Holswade, D. L. Shealy, “Laser Beam Shaping Applications”, Taylor & Francis, 2006, Chap. 8
    [4] X. Liu, ‘‘Laser Beam Homogenization by Scanning a Beam onto a Mask’’ US patent 6574024 B1
    [5] W. B. Veldkamp, “Laser beam profile shaping with binary diffraction gratings”, Opt. Commun. 38, pp381-386, 1981
    [6] W. Lee, “Laser beam profile shaping with binary diffraction gratings”, Opt. Commun. 36, pp469-471, 1981
    [7] F. Wyrowski, O. Bryngdahl, “Iterative fourier transform algorithm applied to computer holography”,J. Opt. Soc. Am. A 5, pp1058-1065, 1988
    [8] Sumitomo Electric Industries, Ltd., Osaka, “Multipoint Lump Homogenizing Optical System”, Jun. 21, 2005
    [9] N. Bokor, N. Davidson, “Anamorphic, adiabatic beam shaping of diffuse light using a tapered reflective tube”, Optics Communications 201, 243-249, 2002
    [10] C. H. Chen, C. C. Chen, W. C. Liang, “Light Pipe Line Beam Shaper” OPTICAL REVIEW Vol. 14, No. 4, 231–235 (2007)
    [11] Y. Kudo, K. Matsumoto, “Illuminating Optical Device”, Apr. 19, 1989
    [12] D. L. Shealy, S. H. Chao, “Geometric optics-based design of laser beam shaper”, Opt. Eng. 42(11) 3123-3138(2003)
    [13] J. J. Kasinski, R. L. Burnham, “Near-diffraction-limited laser beam shaping with diamond-turned aspheric optics”, Optics Letters Vol. 22 No.14 1997
    [14] A. Laskin, V. Laskin, “Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams”, Proc. of SPIE Vol. 7913 79130J-1-10.
    [15] S. McCoya, D. Browna, D. Brown, “Double-sided lenslet array in an imaging multi-beam integrator configuration for a diffuser application”, Proc. of SPIE Vol. 5175 139-148
    [16] T. R. N. Sales, “Structured microlens arrays for beam shaping”, Proc. of SPIE Vol. 5175, 109-120
    [17] R. Bitterli, M. Kim, T. Scharf, H. P. Herzig, A. Bich, C. Dumouchel, S. Roth, R. Volkel, K. J. Weible, “Refractive statistical concave 1D diffusers for laser beamshaping”, Proc. of SPIE Vol. 7062 70620P-1-8
    [18] E. E. Garc´ıa-Guerrero, E. R. M´endez, H. M. Escamilla, “Design and fabrication of random phasediffusers for extending the depth of focus”, Feb. 5, 2007, Vol. 15, No. 3OPTICS EXPRESS 910-923
    [19] J. Masson, A. Bichb, W. Noell, R. Voelkel, K. J. Weible, N. F. De Rooij, “Dynamic MEMS-based Linear (1D) Diffusers for Laser BeamHomogenizing and Beam Shaping”, Proc. of SPIE Vol. 7430 74300H-1-8
    [20] F. Wippermann, U. D. Zeitner, P. Dannberg, A. Brauer, S. Sinzinger, “Beam homogenizers based on chirpedmicrolens arrays”, May 14, 2007, Vol. 15, No. 10, OPTICS EXPRESS 6218-6231
    [21] P. H. Yao, C. H. Chen, C. H. Chen, “Low speckle laser illuminated projection system with a vibrating diffractive beam shaper”, July 16, 2012, Vol. 20, No. 15, OPTICS EXPRESS 16552-16566
    [22] Cymer, Inc.,San Diego, CA, “Laser Thin Film Poly-Silicon Annealing Optical System”, Mar. 7, 2006
    [23] R. Voelkel, K. J. Weible, “Laser Beam Homogenizing: Limitations and Constraints”, Sep. 2008, Glasgow, Scotland, United Kingdom
    [24] Carl Zeiss Laser Optics GmbH, Oberkochen, “Optical Devices And Related Systems And Methods”, Dec. 8, 2009
    [25] COHERENT website http://www.coherent.com/
    [26] D. Hauschild, P. Harten, L. Aschke, V. Lissotschenko, “Free From Microlens System Enable New Laser Beam Profiles for RTP”, IEEE RTP 2008
    [27] Sumitomo Heavy Industories, td. website http://www.shi-mechatronics.jp/en/index.html
    [28] Tamarack Scientific website http://www.tamsci.com/index.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE