簡易檢索 / 詳目顯示

研究生: 張仲晴
Chung-Ching Chang
論文名稱: 硼中子捕獲治療計畫系統NCTPlan對多形性膠原母細胞瘤之病患進行最佳化
Optimization of Boron Neutron Capture Therapy Treatment Planning System NCTPlan for Patient with GBM
指導教授: 董傳中
Chuan-Jong Tung
許芳裕
Fang-Yuh Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 109
中文關鍵詞: 硼中子捕獲治療多形性膠原母細胞瘤清華大學開放式水池反應器
外文關鍵詞: BNCT, GBM, THOR, NCTPlan
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「多形性膠質母細胞瘤」(glioblastoma multiforme, GBM)是一種大腦中高度惡性的腫瘤,其最主要的特徵就是經過手術遺留的癌細胞,幾乎一定在旁邊的正常腦組織再衍生新的癌細胞,因而使得大部分病患不到兩年就死亡。而硼中子捕獲治療(boron neutron capture therapy, BNCT)就是種只能破壞腫瘤細胞與其鄰近的組織的治療方式,且在國際上對於治療GBM方面已取得不錯的治療效果,儼然形成近來研究的焦點。
    我國清華大學的BNCT團隊也積極推動THOR於臨床上的應用,除了在2004年完成了中子射束通率的提高,更發展多項小動物細胞及藥物特性的研究,預期在未來的某一天能從事人體試驗與臨床治療。因此在發現THOR的射束品質較國際原子能總署(International Atomic Energy Agency, IAEA)所建議的指標值好之後,需要更深入的了解與探討THOR中子設束的特性。
    本次研究首先就是利用MCNP程式模擬輻射在Snyder頭型假體中,與物質作用的情形,藉由三種假體射束參數—有效治療深度(AD)、有效治療比例(AR)及有效治療深度劑量率(ADDR),以評估THOR中子能譜THOR50c的強度和品質,更與已有多年臨床試驗的Harvard—MIT團隊所使用的M67中子能譜相比較,使此結果更具有說服力,也為THOR邁向臨床試驗奠定穩固的基礎。
    接著利用由Harvard—MIT團隊所研發並授權於我國的治療計畫系統NCTPlan,分別對國內外的兩位GBM病患進行治療計畫最佳化,也就是改變治療參數,包含照野數目、照射方向等,找出最適合此兩位患者的治療方式,而使腫瘤接受到最高劑量以殺死癌細胞,但周圍正常組織與危急器官則盡可能地降低劑量以減少副作用的產生。
    文中除了呈現THOR50c與M67相互比較,以及兩位GBM病患治療計畫最佳化的結果之外,也對於治療計畫NCTPlan的操作方法作了詳盡的描述,可提供使用者參考,相信對於NCTPlan於國內的使用有所助益。


    目錄 I 摘要 IV 致謝 V 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 硼中子捕獲治療(BNCT) 1 1.1.1 基本原理 1 1.1.2 BNCT混合場的劑量評估 3 1.1.3 BNCT治療流程 6 1.2 THOR的發展 8 1.3 THOR的臨床實用性 9 1.4 研究目的 11 第二章 文獻回顧 12 2.1 萌芽階段 12 2.2 重大突破 13 2.3 成長時期 14 2.4 結語 15 第三章 研究系統與材料 16 3.1 治療計畫系統(TREATMENT PLANNING SYSTEM) 16 3.1.1 NCTPlan簡介 16 3.1.2 NCTPlan Part 1 17 3.1.3 外掛程式MPREP及MCNP 18 3.1.4 NCTPlan Part 2 19 3.2 NCTPLAN詳細操作說明 20 3.2.1 前置作業—CT影像轉檔 20 3.2.2 輸入影像 23 3.2.3 影像編輯 24 3.2.4 描繪身體輪廓 25 3.2.5 描繪腫瘤與感興趣器官的範圍 26 3.2.6 審查影像 26 3.2.7 設定材質臨界值 27 3.2.8 輸入硼-10濃度 28 3.2.9 選擇射束入射方向 28 3.2.10 建立MCNP材質記錄檔 31 3.2.11 各照野劑量結果 33 3.2.12 最大生物劑量率與硼-10濃度的關係 33 3.2.13 等劑量曲線和百分深度劑量曲線 34 3.2.14 各別射束對於劑量的貢獻 36 3.2.15 劑量體積直方圖 36 3.2.16 儲存治療計畫 37 3.2.17 其他功能鍵 37 3.3 NCTPLAN完整操作架構 38 3.4 SNYDER 頭型假體 39 第四章 研究方法與步驟 40 4.1 驗證THOR的臨床實用性 40 4.1.1 實驗方法 40 4.1.2 與MITR-II超熱中子射源M67比較的原因 42 4.1.3 所要比較的治療參數 43 4.2 治療計畫最佳化(OPTIMIZATION) 44 4.2.1 最佳化流程 44 4.2.2 病患篩選 45 4.2.3 採用的病患資料 49 4.2.4 治療入射方向選擇 50 4.2.5 治療劑量的條件限制 51 4.2.6 治療參數設定 53 4.3 劑量結果程式化 54 4.3.1 數學模式概念 54 4.3.2 時間—硼濃度預測 55 4.3.3 程式撰寫概念 56 第五章 結果與討論 57 5.1 能譜M67與THOR50C於假體中的比較結果 57 5.2 MIT病患的治療計畫最佳化結果 62 5.2.1 試驗一(trial 1) 62 5.2.2 試驗二(trial 2) 69 5.2.3 比較試驗一與試驗二 74 5.3 林口長庚醫院病患的治療計畫最佳化結果 75 5.4 MATLAB劑量程式化的結果 79 第六章 結論與未來展望 80 6.1 研究結語 80 6.2 NCTPLAN V1.1系統使用上的限制性 83 6.3 BNCT與傳統放射治療計畫呈現的相異處 83 6.4 硼中子捕獲治療成敗的決定因素 84 6.5 中子治療的問題與展望 85 第七章 參考文獻 86 第八章 附錄 90

    1. Endf/B-Vi Neutron Data Form T-2 Nuclear Information Service.
    2. Tissue Substitutes in Radation Dosimetry and Measurement. ICRU report 44, 1989.
    3. J.A. Coderre, G.M.M., P.L. Micca, C.D. Fisher and G.A. Ross, Comparative Assessment of Single-Dose and Fractionated Boron Neutron Capture Therapy. Radiation Research, Dec. 1995. 144(3): p. 310-317.
    4. 王雅玲, 硼中子捕獲治療計畫nctplan應用於清華大學水池式反應器之研究. 國立清華大學碩士論文, 2004.
    5. Kiger, I.W.S., et al., A Pharmacokinetic Model for the Concentration of 10b in Blood after Boronophenylalanine-Fructose Administration in Humans. Radiation Research, 2001. 155(4): p. 611-618.
    6. Palmer, M.R., et al., Treatment Planning and Dosimetry for the Harvard-Mit Phase I Clinical Trial of Cranial Neutron Capture Therapy. International Journal of Radiation Oncology*Biology*Physics, 2002. 53: p. 1361-1379.
    7. 黃泰庭, 清華水池式反應器改建為硼中子捕獲治療專用核反應爐之超熱中子束最終設計分析. 國立清華大學碩士論文, 2003.
    8. Tung, C.J., et al., Characteristics of the New Thor Epithermal Neutron Beam for Bnct. Applied Radiation and Isotopes, 2004. 61(5): p. 861-864.
    9. Rorer, D. and A. Wambersie, Current Status of Neutron Capture Therapy. IAEA-TECDOC-1223, 2001.
    10. Chadwick, J., The Existence of a Neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 136(830): p. 692-708.
    11. GOLDHABER, H.J.T.M., Detection of Nuclear Disintegration in a Photographic Emulsion. Nature, 02 March 1935. 135: p. 341-341.
    12. GL, L., Biological Effects and Therapeutic Possibilities of Neutrons. American Journal of Roentgenology, 1936. 36: p. 1-13.
    13. Slatkin, D.N., A History of Boron Neutron Capture Therapy of Brain Tumours: Postulation of a Brain Radiation Dose Tolerance Limit. Brain, 1991. 114(4): p. 1609-1629.
    14. Kruger, P.G., Some Biological Effects of Nuclear Disintegration Products on Neoplastic Tissue Proceedings of the National Academy of Sciences of the United States of America, Mar. 15, 1940. 26(3): p. 181-192
    15. Stone, R.S., Neutron Therapy and Specific Ionization. American Journal of Roentgenology and Radium Therapy; Vol: 59, 1948: p. Pages: 771-785.
    16. Hatanaka, Boron-Neutron Capture Therapy for Tumors. 1986: p. 1-28.
    17. Hatanaka, Clinical Experience of Boron-Neutron Capture Therapy for Gliomas: A Comparison with Conventional Chemo-Immunoradiotherapy. Boron-Neutron Capture Therapy for Tumors: p. 349-379.
    18. Busse, P.M., et al., A Critical Examination of the Results from the Harvard-Mit Nct Program Phase I Clinical Trial of Neutron Capture Therapy for Intracranial Disease. Journal of Neuro-Oncology, 2003. 62(1): p. 111-121.
    19. Teruyoshi, K., et al., Boron Neutron Capture Therapy Using Mixed Epithermal and Thermal Neutron Beams in Patients with Malignant Glioma-Correlation between Radiation Dose and Radiation Injury and Clinical Outcome. International journal of radiation oncology, biology, physics, 2006. 65(5): p. 1446-1455.
    20. Rolf, F.B. and J. Heikki, Boron Neutron Capture Therapy for the Treatment of Glioblastomas and Extracranial Tumours: As Effective, More Effective or Less Effective Than Photon Irradiation? Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2007. 82(2): p. 119-122.
    21. Wojnecki, C. and S. Green, A Preliminary Comparative Study of Two Treatment Planning Systems Developed for Boron Neutron Capture Therapy: Macnctplan and Sera. Medical Physics, 2002. 29(8): p. 1710-1715.
    22. W.S. Kiger, I., et al., Performance Enhancements of Mcnp4b, Mcnp5, and Mcnpx for Monte Carlo Radiotherapy Planning Calculations in Lattice Geometries. 2005: International Symposia on Neutron Capture Therapy Boston, MA, USA.
    23. Zamenhof, R., et al., Monte Carlo-Based Treatment Planning for Boron Neutron Capture Therapy Using Custom Designed Models Automatically Generated from Ct Data. Vol. 35. 1996: Elsevier Science. 383-397.
    24. Goorley, J.T., W.S. Kiger Iii, and R.G. Zamenhof, Reference Dosimetry Calculations for Neutron Capture Therapy with Comparison of Analytical and Voxel Models. Medical Physics, 2002. 29(2): p. 145-156.
    25. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. ICRU Report 46, 1992.
    26. 林宗逸, 清華大學水池式反應器bnct治療計畫程式thorplan之開發與驗證. 國立清華大學碩士論文, 2004.
    27. 李辰衍, Bnct治療計畫程式thorplan影像分類處理方法與準確性驗證. 國立清華大學碩士論文, 2007.
    28. Sakamoto, S., W.S. Kiger Iii, and O.K. Harling, Sensitivity Studies of Beam Directionality, Beam Size, and Neutron Spectrum for a Fission Converter-Based Epithermal Neutron Beam for Boron Neutron Capture Therapy. Medical Physics, 1999. 26(9): p. 1979-1988.
    29. Harling, O.K. and K.J. Riley, Fission Reactor Neutron Sources for Neutron Capture Therapy – a Critical Review. Journal of Neuro-Oncology, 2003. 62(1): p. 7-17.
    30. Coderre, J.A., et al., Boron Neutron Capture Therapy for Glioblastoma Multiforme Using P-Boronophenylalanine and Epithermal Neutrons: Trial Design and Early Clinical Results. Journal of Neuro-Oncology, 1997. 33(1): p. 141-152.
    31. Joensuu, H., et al., Boron Neutron Capture Therapy of Brain Tumors: Clinical Trials at the Finnish Facility Using Boronophenylalanine. Journal of Neuro-Oncology, 2003. 62(1): p. 123-134.
    32. Capala, J., et al., Boron Neutron Capture Therapy for Glioblastoma Multiforme: Clinical Studies in Sweden. Journal of Neuro-Oncology, 2003. 62(1): p. 135-144.
    33. Blaumann, H.R., et al., Boron Neutron Capture Therapy of Skin Melanomas at the Ra-6 Reactor: A Procedural Approach to Beam Set up and Performance Evaluation for Upcoming Clinical Trials. Medical Physics, 2004. 31(1): p. 70-80.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE