簡易檢索 / 詳目顯示

研究生: 黃韋智
Huang, Wei-Chih
論文名稱: 鋅黃錫礦太陽能電池之銀合金化及前介面鈍化研究
Investigation of Ag-alloying and front interface passivation of kesterite solar cells
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 黃瑜
Huang, Yu
謝東坡
Hsieh, Tung-Po
闕郁倫
Chueh, Yu-Lun
林姿瑩
Lin, Tzu-Ying
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 150
中文關鍵詞: 鋅黃錫礦硒硫化銀銅鋅錫噴霧熱裂解銅鋅錯位點接觸鈍化
外文關鍵詞: kesterite, (Cu, Ag)2ZnSn(S, Se)4, spray pyrolysis, Cu_Zn antisite, point contact, passivation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硒硫化銅鋅錫為鋅黃錫礦結構,是地表多豐且組成便宜的材料,有高吸收係數使其具潛力作為低成本高效率的薄膜太陽能電池。然而其光電轉換效率仍停滯於12.6%,遠低於硒硫化銅銦鎵太陽能電池的23.35%。本博士論文針對鋅黃錫礦薄膜太陽能電池的開路電壓不足採取對策,以改善光電轉換效率。銀的合金化形成新穎的硒硫化銀銅鋅錫化合物,被認為能夠減少銅鋅錯位,減少能帶尾端態並提升開路電壓。然而引入銀將使本已複雜的四/五元化合物變成更複雜的五/六元素化合物,在製程上更具挑戰性。首先我們研發以低成本,環境友善,具有大面積塗佈能力的噴霧熱裂解製程,製作含銀的銀-銅-鋅-錫-硫前驅物並探討形成硒硫化銀銅鋅錫薄膜的過程。選擇溶解度較高的金屬鹽類以及適當的添加順序,我們能夠配製透明均質的前驅物水溶液,噴霧塗佈後形成成分均勻的硫化物前驅物薄膜,製作出成分均勻,高銀含量且較少二次相的硒硫化銀銅鋅錫化合物。接著我們深入探討此製程製備的硒硫化銀銅鋅錫薄膜太陽能電池。銀合金化幫助晶粒成長、提高能隙、減少銅鋅錯位以及能帶尾端態,但伴隨高溫相穩定性問題,低載子濃度及缺鈉的介面載子復合。充分考慮以上因素後,我們能在較低的製程溫度,額外添加鈉改善性質,在Ag/(Ag+Cu)~ 35%的鋅黃錫礦太陽能電池達到10 %的光電轉換效率,是高銀含量(Ag/(Ag+Cu)> 30%)鋅黃錫礦的效率紀錄。為解決鋅黃錫礦介面載子復合問題,在前介面引入介電鈍化層搭配點接觸結構為一理想方法。然而在硫系化物前介面形成點接觸結構,因表面粗糙且額外圖案化製程可能損傷吸收層表面,非常具挑戰性。利用在硒化過程中原位形成的硫化鋅二次相奈米粒子作為舉離製程的遮罩,我們首次在前介面形成具點接觸的氧化鉭薄膜鈍化結構,減少介面載子復合,有效提升開路電壓以及光電轉換效率,為硫系化物太陽能電池的表面鈍化帶來更多可能。


    Cu2ZnSn(S, Se)4, with kesterite crystal structure, is an earth abundant and cheap material which possesses high absorption coefficient and make it a potential candidate for low cost high efficiency thin film solar cells. However, the efficiency is still staggered around 12.6 %, which is still far lower than the Cu(In, Ga)(S, Se)2 of 23.35%.This dissertation aims to take action to solve VOC-deficit problem of kesterite solar cells to improve the efficiency. Incorporation of Ag to form novel (Ag, Cu)2ZnSn(S,Se)4 (ACZTSSe) compounds has been regarded as an approach to reducing Cu-Zn disorder and tailing states. However, Ag incorporation makes the materials more complicated with five or six elements, which is even more challenging for processing.
    First, we fabricate ACZTSSe films through low-cost, environment-friendly, and scalable aqueous spray pyrolysis process. The formation mechanism is discussed and compared with CZTSSe. With proper choices of chemicals and addition sequence, clear Ag-containing solution can be formed, which was utilized to deposit ACZTSSe films with high Ag content and less secondary phases in 2015.
    Next, we further discuss ACZTSSe solar cells through the process. Ag incorporation helps grain growth, increases bandgap, reduces Cu-Zn antisites and Urbach tail energy, but accompanied by the phase stability problem, low carrier concentration and interface recombination due to Na-deficient. Considering the factors above, we reached 10% efficiency with Ag/(Ag+Cu) ~0.35, which is processed at lower temperature with improved properties by extra Na. This is the record of kesterite solar cells with high Ag content (Ag/(Ag+Cu) ≥ 30%).
    Introducing a dielectric passivation layer with point contacts is an ideal way to solve interface recombination. However, forming point contacts at front surface of chalcogenide solar cells is even challenging because extra patterning process may damage the absorber surface. With the help of in-situ formed ZnS nanoparticles to act as a mask for lift-off process, we first demonstrated the TaOx film with point contact openings at front interface to reduce interface recombination, resulting in the improved VOC and efficiency, which bring more opportunity for the developments of chalcogenide solar cells.

    Abstract i 中文摘要 ii Acknowledgements iii Contents iv List of Figures vii List of Tables xiii Chapter 1 1 General introduction 1 Chapter 2 4 Background 4 2.1 Physics of photovoltaics 4 2.1.1 P-N junction 4 2.1.2 Current density (J) -voltage (V) characteristics of p-n junction and solar cells. 5 2.1.3 Recombination mechanism in solar cells 9 2.2 Introduction to kesterite solar cells 11 2.2.1 General properties of Cu2ZnSn(S, Se)4 11 2.2.2 Process of kesterite solar cells 15 2.3 Cation substitution of kesterite 30 2.3.1 Concepts of cation substitution 30 2.3.2 Ge substitution for Sn 31 2.3.3 Cd substitution for Zn 34 2.3.4 Ag substitution for Cu 36 2.4 Front surface dielectric passivation 39 2.4.1 Materials for front surface passivation layers 39 2.4.2 Point contacts 42 Chapter 3 45 Experimental techniques 45 3.1 Sample preparation 45 3.1.1 Absorber preparation 45 3.1.2 Sputtering 47 3.1.3 Backend process 48 3.2 Material analysis 49 3.2.1 X-ray diffraction 49 3.2.2 Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) 50 3.2.3 Raman spectroscopy 51 3.2.4 Photoluminescence (PL) and time-resolved photoluminescence (TRPL) 52 3.2.5 X-ray photoelectron spectroscopy 53 3.2.6 Transmission electron microscopy (TEM) 55 3.2.7 Atomic force microscopy 56 3.3 Electrical characterization 57 3.3.1 Current density-voltage measurements 57 3.3.2 External quantum efficiency (EQE) 59 3.3.3 Capacitance-based measurements 60 Chapter 4 63 Formation of Ag-alloyed kesterite by using spray pyrolysis63 4.1 Introduction 64 4.2 Experimental 65 4.3 Results and discussion 67 4.3.1 Evolution of sprayed Cu-Zn-Sn-S precursor during selenization 67 4.3.2. Solution formation and evolution of Ag-Cu-Zn-Sn-S precursor 70 4.4 Conclusions 76 Chapter 5 78 The role of Ag in aqueous solution processed (Ag,Cu)2ZnSn(S,Se)4 kesterite solar cells 78 5.1 Introduction 79 5.2 Experimental 80 5.3 Results and discussion 82 5.4 Conclusions 99 Chapter 6 101 ALD-TaOx layer with point contacts enabled by in-situ formed nanoparticles for front interface passivation of kesterite solar cells 101 6.1 Introduction 102 6.2 Experimental 105 6.3 Results and discussion 107 6.3.1. Formation of point openings using in-situ formed nanoparticles 107 6.3.2 Characterization of kesterite solar cells with point contact openings of TaOx passivation layer 113 6.4 Conclusion 120 Chapter 7 121 Conclusion and outlooks 121 References 124 Appendix 148

    [1] IEA, Renewables 2020, 2020. https://www.iea.org/reports/renewables-2020?mode=overview.
    [2] NREL, Best Research-Cell Efficiency Chart, 2021. https://www.nrel.gov/pv/cell-efficiency.html.
    [3] M.Nakamura, K.Yamaguchi, Y.Kimoto, Y.Yasaki, T.Kato, H.Sugimoto, Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%, IEEE J. Photovoltaics. 9 (2019) 1863–1867. doi:10.1109/JPHOTOV.2019.2937218.
    [4] T.Gokmen, O.Gunawan, T.K.Todorov, D.B.Mitzi, Band tailing and efficiency limitation in kesterite solar cells, Appl. Phys. Lett. 103 (2013) 103506. doi:10.1063/1.4820250.
    [5] O.Gunawan, T.K.Todorov, D.B.Mitzi, Loss mechanisms in hydrazine-processed Cu2 ZnSn (Se,S) 4 solar cells, Appl. Phys. Lett. 97 (2010) 1–4. doi:10.1063/1.3522884.
    [6] M.A.Green, Solar cell fill factors: General graph and empirical expressions, Solid State Electron. 24 (1981) 788–789. doi:10.1016/0038-1101(81)90062-9.
    [7] F.H.Pianezzi, Electronic transport and doping mechanisms in Cu(In,Ga)Se, (2014) 1–159. doi:10.3929/ETHZ-A-010143313.
    [8] R.Scheer, H.-W.Schock, Thin Film Heterostructures, Chalcogenide Photovoltaics. (2011) 9–127. doi:10.1002/9783527633708.ch2.
    [9] W.Li, J.M.R.Tan, S.W.Leow, S.Lie, S.Magdassi, L.H.Wong, Recent Progress in Solution-Processed Copper-Chalcogenide Thin-Film Solar Cells, Energy Technol. 6 (2018) 46–59. doi:10.1002/ente.201700734.
    [10] S.Chen, X.G.Gong, A.Walsh, S.H.Wei, Crystal and electronic band structure of Cu2 ZnSn X4 (X=S and Se) photovoltaic absorbers: First-principles insights, Appl. Phys. Lett. 94 (2009) 94–97. doi:10.1063/1.3074499.
    [11] S.Schorr, The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study, Sol. Energy Mater. Sol. Cells. 95 (2011) 1482–1488. doi:10.1016/j.solmat.2011.01.002.
    [12] J.Chang, E.R.Waclawik, Colloidal semiconductor nanocrystals: Controlled synthesis and surface chemistry in organic media, RSC Adv. 4 (2014) 23505–23527. doi:10.1039/c4ra02684e.
    [13] I.D.Olekseyuk, I.V.Dudchak, L.V.Piskach, Phase equilibria in the Cu2S-ZnS-SnS2 system, J. Alloys Compd. 368 (2004) 135–143. doi:10.1016/j.jallcom.2003.08.084.
    [14] S.Giraldo, Z.Jehl, M.Placidi, V.Izquierdo-Roca, A.Pérez-Rodríguez, E.Saucedo, Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review, Adv. Mater. 31 (2019) 1–11. doi:10.1002/adma.201806692.
    [15] M.Kumar, A.Dubey, N.Adhikari, S.Venkatesan, Q.Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells, Energy Environ. Sci. 8 (2015) 3134–3159. doi:10.1039/c5ee02153g.
    [16] S.Chen, A.Walsh, X.G.Gong, S.H.Wei, Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers, Adv. Mater. 25 (2013) 1522–1539. doi:10.1002/adma.201203146.
    [17] A.Lafond, L.Choubrac, C.Guillot-Deudon, P.Deniard, S.Jobic, Crystal structures of photovoltaic chalcogenides, an intricate puzzle to solve: The cases of CIGSe and CZTS materials, Zeitschrift Fur Anorg. Und Allg. Chemie. 638 (2012) 2571–2577. doi:10.1002/zaac.201200279.
    [18] G.Gurieva, R.Ferreira, P.Knoll, S.Schorr, Cu2ZnSnSe4: How Far Does Off-Stoichiometry Go?, Phys. Status Solidi Appl. Mater. Sci. 215 (2018) 4–9. doi:10.1002/pssa.201700957.
    [19] S.Schorr, G.Gurieva, M.Guc, M.Dimitrievska, A.Pérez-Rodríguez, V.Izquierdo-Roca, C.S.Schnohr, J.Kim, W.Jo, J.M.Merino, Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites, JPhys Energy. 2 (2020). doi:10.1088/2515-7655/ab4a25.
    [20] V.Karade, A.Lokhande, P.Babar, M.G.Gang, M.Suryawanshi, P.Patil, J.H.Kim, Insights into kesterite’s back contact interface: A status review, Sol. Energy Mater. Sol. Cells. 200 (2019) 109911. doi:10.1016/j.solmat.2019.04.033.
    [21] J.J.Scragg, J.T.Wätjen, M.Edoff, T.Ericson, T.Kubart, C.Platzer-Björkman, A detrimental reaction at the molybdenum back contact in Cu 2ZnSn(S,Se)4 thin-film solar cells, J. Am. Chem. Soc. 134 (2012) 19330–19333. doi:10.1021/ja308862n.
    [22] T.Taskesen, J.Neerken, J.Schoneberg, D.Pareek, V.Steininger, J.Parisi, L.Gütay, Device Characteristics of an 11.4% CZTSe Solar Cell Fabricated from Sputtered Precursors, Adv. Energy Mater. 8 (2018) 1–6. doi:10.1002/aenm.201703295.
    [23] X.Li, Z.Su, S.Venkataraj, S.K.Batabyal, L.H.Wong, 8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer, Sol. Energy Mater. Sol. Cells. 157 (2016) 101–107. doi:10.1016/j.solmat.2016.05.032.
    [24] J.K.Larsen, F.Larsson, T.Törndahl, N.Saini, L.Riekehr, Y.Ren, A.Biswal, D.Hauschild, L.Weinhardt, C.Heske, C.Platzer-Björkman, Cadmium Free Cu2ZnSnS4 Solar Cells with 9.7% Efficiency, Adv. Energy Mater. 9 (2019) 1–8. doi:10.1002/aenm.201900439.
    [25] X.Cui, K.Sun, J.Huang, J.S.Yun, C.Y.Lee, C.Yan, H.Sun, Y.Zhang, C.Xue, K.Eder, L.Yang, J.M.Cairney, J.Seidel, N.J.Ekins-Daukes, M.Green, B.Hoex, X.Hao, Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers, Energy Environ. Sci. 12 (2019) 2751–2764. doi:10.1039/c9ee01726g.
    [26] K.Sun, C.Yan, F.Liu, J.Huang, F.Zhou, J.A.Stride, M.Green, X.Hao, Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer, Adv. Energy Mater. 6 (2016) 4–9. doi:10.1002/aenm.201600046.
    [27] H.K.Hong, I.Y.Kim, S.W.Shin, G.Y.Song, J.Y.Cho, M.G.Gang, J.C.Shin, J.H.Kim, J.Heo, Atomic layer deposited zinc oxysulfide n-type buffer layers for Cu2ZnSn(S,Se)4 thin film solar cells, Sol. Energy Mater. Sol. Cells. 155 (2016) 43–50. doi:10.1016/j.solmat.2016.04.054.
    [28] H.Katagiri, N.Sasaguchi, S.Hando, S.Hoshino, J.Ohashi, T.Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Sol. Energy Mater. Sol. Cells. 49 (1997) 407–414. doi:10.1016/S0927-0248(97)00119-0.
    [29] H.Katagiri, K.Saitoh, T.Washio, H.Shinohara, T.Kurumadani, S.Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films, Sol. Energy Mater. Sol. Cells. 65 (2001) 141–148. doi:10.1016/S0927-0248(00)00088-X.
    [30] I.Repins, C.Beall, N.Vora, C.Dehart, D.Kuciauskas, P.Dippo, B.To, J.Mann, W.C.Hsu, A.Goodrich, R.Noufi, Co-evaporated Cu 2ZnSnSe 4 films and devices, Sol. Energy Mater. Sol. Cells. 101 (2012) 154–159. doi:10.1016/j.solmat.2012.01.008.
    [31] Y.S.Lee, T.Gershon, O.Gunawan, T.K.Todorov, T.Gokmen, Y.Virgus, S.Guha, Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length, Adv. Energy Mater. 5 (2015) 2–5. doi:10.1002/aenm.201401372.
    [32] K.Ito, T.Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films, Jpn. J. Appl. Phys. 27 (1988) 2094–2097. doi:10.1143/JJAP.27.2094.
    [33] H.Katagiri, K.Jimbo, S.Yamada, T.Kamimura, W.S.Maw, T.Fukano, T.Ito, T.Motohiro, Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique, Appl. Phys. Express. 1 (2008) 0412011–0412012. doi:10.1143/APEX.1.041201.
    [34] S.W.Shin, S.M.Pawar, C.Y.Park, J.H.Yun, J.H.Moon, J.H.Kim, J.Y.Lee, Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films, Sol. Energy Mater. Sol. Cells. 95 (2011) 3202–3206. doi:10.1016/j.solmat.2011.07.005.
    [35] F.Liu, C.Yan, J.Huang, K.Sun, F.Zhou, J.A.Stride, M.A.Green, X.Hao, Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells, Adv. Energy Mater. 6 (2016) 1–10. doi:10.1002/aenm.201600706.
    [36] S.Y.Kim, D.H.Son, Y.I.Kim, S.H.Kim, S.Kim, K.Ahn, S.J.Sung, D.K.Hwang, K.J.Yang, J.K.Kang, D.H.Kim, Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors, Nano Energy. 59 (2019) 399–411. doi:10.1016/j.nanoen.2019.02.063.
    [37] X.Li, D.Zhuang, N.Zhang, M.Zhao, X.Yu, P.Liu, Y.Wei, G.Ren, Achieving 11.95% efficient Cu2ZnSnSe4 solar cells fabricated by sputtering a Cu-Zn-Sn-Se quaternary compound target with a selenization process, J. Mater. Chem. A. 7 (2019) 9948–9957. doi:10.1039/c9ta00385a.
    [38] T.Todorov, H.W.Hillhouse, S.Aazou, Z.Sekkat, O.Vigil-Galán, S.D.Deshmukh, R.Agrawal, S.Bourdais, M.Valdés, P.Arnou, D.B.Mitzi, P.J.Dale, Solution-based synthesis of kesterite thin film semiconductors, J. Phys. Energy. 2 (2020) 012003. doi:10.1088/2515-7655/ab3a81.
    [39] T.K.Todorov, K.B.Reuter, D.B.Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber, Adv. Mater. 22 (2010) 156–159. doi:10.1002/adma.200904155.
    [40] T.K.Todorov, J.Tang, S.Bag, O.Gunawan, T.Gokmen, Y.Zhu, D.B.Mitzi, Beyond 11% efficiency: Characteristics of state-of-the-art Cu 2ZnSn(S,Se)4Solar Cells, Adv. Energy Mater. 3 (2013) 34–38. doi:10.1002/aenm.201200348.
    [41] W.Yang, H.S.Duan, B.Bob, H.Zhou, B.Lei, C.H.Chung, S.H.Li, W.W.Hou, Y.Yang, Novel solution processing of high-efficiency earth-abundant Cu 2ZnSn(S,Se)4 solar cells, Adv. Mater. 24 (2012) 6323–6329. doi:10.1002/adma.201201785.
    [42] T.Todorov, H.Sugimoto, O.Gunawan, T.Gokmen, D.B.Mitzi, High-Efficiency Devices With Pure Solution-Processed Cu ZnSn (S, Se) Absorbers, Photovoltaics, IEEE J. 4 (2014) 483–485.
    [43] W.Wang, M.T.Winkler, O.Gunawan, T.Gokmen, T.K.Todorov, Y.Zhu, D.B.Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater. 4 (2014) 1–5. doi:10.1002/aenm.201301465.
    [44] W.Ki, H.W.Hillhouse, Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent, Adv. Energy Mater. 1 (2011) 732–735.
    [45] T.Schnabel, M.Löw, E.Ahlswede, Vacuum-free preparation of 7.5% efficient Cu 2 ZnSn (S, Se) 4 solar cells based on metal salt precursors, Sol. Energy Mater. Sol. Cells. 117 (2013) 324–328.
    [46] H.Xin, J.K.Katahara, I.L.Braly, H.W.Hillhouse, 8% Efficient Cu2ZnSn(S,Se)4 solar cells from redox equilibrated simple precursors in DMSO, Adv. Energy Mater. 4 (2014) 1301823. doi:10.1002/aenm.201301823.
    [47] S.G.Haass, C.Andres, R.Figi, C.Schreiner, M.Bürki, Y.E.Romanyuk, A.N.Tiwari, Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells, Adv. Energy Mater. 8 (2018) 1–9. doi:10.1002/aenm.201701760.
    [48] H.Xin, S.M.Vorpahl, A.D.Collord, I.L.Braly, A.R.Uhl, B.W.Krueger, D.S.Ginger, H.W.Hillhouse, Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency, Phys. Chem. Chem. Phys. 17 (2015) 23859–23866. doi:10.1039/c5cp04707b.
    [49] A.D.Collord, H.W.Hillhouse, Germanium Alloyed Kesterite Solar Cells with Low Voltage Deficits, Chem. Mater. 28 (2016) 2067–2073. doi:10.1021/acs.chemmater.5b04806.
    [50] R.Zhang, S.M.Szczepaniak, N.J.Carter, C.A.Handwerker, R.Agrawal, A versatile solution route to efficient Cu 2 ZnSn(S,Se) 4 thin-film solar cells, Chem. Mater. 27 (2015) 2114–2120. doi:10.1021/cm504654t.
    [51] J.Fu, J.Fu, Q.Tian, H.Wang, F.Zhao, J.Kong, X.Zhao, S.Wu, Tuning the Se Content in Cu2ZnSn(S, Se)4 Absorber to Achieve 9.7% Solar Cell Efficiency from a Thiol/Amine-Based Solution Process, ACS Appl. Energy Mater. 1 (2018) 594–601. doi:10.1021/acsaem.7b00146.
    [52] Y.E.Romanyuk, C.M.Fella, A.R.Uhl, M.Werner, A.N.Tiwari, T.Schnabel, E.Ahlswede, Recent trends in direct solution coating of kesterite absorber layers in solar cells, Sol. Energy Mater. Sol. Cells. 119 (2013) 181–189. doi:http://dx.doi.org/10.1016/j.solmat.2013.06.038.
    [53] N.Nakayama, K.Ito, Sprayed films of stannite Cu2ZnSnS4, Appl. Surf. Sci. 92 (1996) 171–175. doi:10.1016/0169-4332(95)00225-1.
    [54] Y.B.K.Kumar, G.S.Babu, P.U.Bhaskar, V.S.Raja, Effect of starting-solution pH on the growth of Cu 2ZnSnS 4 thin films deposited by spray pyrolysis, Phys. Status Solidi Appl. Mater. Sci. 206 (2009) 1525–1530. doi:10.1002/pssa.200824424.
    [55] Y.B.K.Kumar, G.S.Babu, P.U.Bhaskar, V.S.Raja, Preparation and characterization of spray-deposited Cu 2 ZnSnS 4 thin films, Sol. Energy Mater. Sol. Cells. 93 (2009) 1230–1237.
    [56] X.Zeng, K.F.Tai, T.Zhang, C.W.J.Ho, X.Chen, A.Huan, T.C.Sum, L.H.Wong, Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization, Sol. Energy Mater. Sol. Cells. 124 (2014) 55–60. doi:10.1016/j.solmat.2014.01.029.
    [57] T.H.Nguyen, W.Septina, S.Fujikawa, F.Jiang, T.Harada, S.Ikeda, Cu 2 ZnSnS 4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique, RSC Adv. 5 (2015) 77565–77571. doi:10.1039/C5RA13000J.
    [58] T.H.Nguyen, S.Fujikawa, T.Harada, J.Chantana, T.Minemoto, S.Nakanishi, S.Ikeda, Impact of Precursor Compositions on the Structural and Photovoltaic Properties of Spray-Deposited Cu2ZnSnS4 Thin Films, ChemSusChem. 9 (2016) 2414–2420. doi:10.1002/cssc.201600641.
    [59] T.Enkhbat, S.Kim, J.Kim, Device Characteristics of Band gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution, ACS Appl. Mater. Interfaces. 11 (2019) 36735–36741. doi:10.1021/acsami.9b12565.
    [60] Z.Su, K.Sun, Z.Han, H.Cui, F.Liu, Y.Lai, J.Li, X.Hao, Y.Liu, M.A.Green, Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route, J. Mater. Chem. A. 2 (2014) 500–509. doi:10.1039/c3ta13533k.
    [61] F.Liu, F.Zeng, N.Song, L.Jiang, Z.Han, Z.Su, C.Yan, X.Wen, X.Hao, Y.Liu, Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process, ACS Appl. Mater. Interfaces. 7 (2015) 14376–14383. doi:10.1021/acsami.5b01151.
    [62] Z.Su, J.M.R.Tan, X.Li, X.Zeng, S.K.Batabyal, L.H.Wong, Cation Substitution of Solution-Processed Cu2ZnSnS4 Thin Film Solar Cell with over 9% Efficiency, Adv. Energy Mater. 5 (2015) 2–8. doi:10.1002/aenm.201500682.
    [63] A.Guchhait, Z.Su, Y.F.Tay, S.Shukla, W.Li, S.W.Leow, J.M.R.Tan, S.Lie, O.Gunawan, L.H.Wong, Enhancement of Open-Circuit Voltage of Solution-Processed Cu2ZnSnS4 Solar Cells with 7.2% Efficiency by Incorporation of Silver, ACS Energy Lett. 1 (2016) 1256–1261. doi:10.1021/acsenergylett.6b00509.
    [64] S.H.Wu, K.T.Huang, H.J.Chen, C.F.Shih, Cu2ZnSn(SxSe1−x)4 thin film solar cell with high sulfur content (x approximately 0.4) and low Voc deficit prepared using a postsulfurization process, Sol. Energy Mater. Sol. Cells. 175 (2018) 89–95. doi:10.1016/j.solmat.2017.09.036.
    [65] G.Larramona, S.Bourdais, A.Jacob, C.Choné, T.Muto, Y.Cuccaro, B.Delatouche, C.Moisan, D.Péré, G.Dennler, Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction, RSC Adv. 4 (2014) 14655–14662. doi:10.1039/c4ra01707b.
    [66] G.Larramona, S.Bourdais, A.Jacob, C.Choné, T.Muto, Y.Cuccaro, B.Delatouche, C.Moisan, D.Péré, G.Dennler, 8.6% Efficient CZTSSe solar cells sprayed from water-ethanol CZTS colloidal solutions, J. Phys. Chem. Lett. 5 (2014) 3763–3767. doi:10.1021/jz501864a.
    [67] G.Larramona, S.Levcenko, S.Bourdais, A.Jacob, C.Choné, B.Delatouche, C.Moisan, J.Just, T.Unold, G.Dennler, Fine-Tuning the Sn Content in CZTSSe Thin Films to Achieve 10.8% Solar Cell Efficiency from Spray-Deposited Water-Ethanol-Based Colloidal Inks, Adv. Energy Mater. 5 (2015) 1–10. doi:10.1002/aenm.201501404.
    [68] Q.Guo, H.W.Hillhouse, R.Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, J. Am. Chem. Soc. 131 (2009) 11672–11673. doi:10.1021/ja904981r.
    [69] Q.Guo, G.M.Ford, W.-C.Yang, B.C.Walker, E.A.Stach, H.W.Hillhouse, R.Agrawal, Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals, J. Am. Chem. Soc. 132 (2010) 17384–17386.
    [70] Y.Cao, M.S.Denny, J.V.Caspar, W.E.Farneth, Q.Guo, A.S.Ionkin, L.K.Johnson, M.Lu, I.Malajovich, D.Radu, H.D.Rosenfeld, K.R.Choudhury, W.Wu, M.S.Denny Jr, J.V.Caspar, W.E.Farneth, Q.Guo, A.S.Ionkin, L.K.Johnson, M.Lu, I.Malajovich, D.Radu, High-efficiency solution-processed Cu 2ZnSn(S,Se) 4 thin-film solar cells prepared from binary and ternary nanoparticles, J. Am. Chem. Soc. 134 (2012) 15644–15647. doi:10.1021/ja3057985.
    [71] C.K.Miskin, W.C.Yang, C.J.Hages, N.J.Carter, C.S.Joglekar, E.A.Stach, R.Agrawal, 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks, Prog. Photovoltaics Res. Appl. 23 (2015) 654–659. doi:10.1002/pip.2472.
    [72] U.Ghorpade, M.Suryawanshi, S.W.Shin, K.Gurav, P.Patil, S.Pawar, C.W.Hong, J.H.Kim, S.Kolekar, Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: A status review, Chem. Commun. 50 (2014) 11258–11273. doi:10.1039/c4cc03176h.
    [73] S.Bag, O.Gunawan, T.Gokmen, Y.Zhu, D.B.Mitzi, Hydrazine-processed Ge-substituted CZTSe solar cells, Chem. Mater. 24 (2012) 4588–4593. doi:10.1021/cm302881g.
    [74] S.Kim, K.M.Kim, H.Tampo, H.Shibata, K.Matsubara, S.Niki, Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%, Sol. Energy Mater. Sol. Cells. 144 (2016) 488–492. doi:10.1016/j.solmat.2015.09.039.
    [75] S.Giraldo, E.Saucedo, M.Neuschitzer, F.Oliva, M.Placidi, X.Alcobé, V.Izquierdo-Roca, S.Kim, H.Tampo, H.Shibata, A.Perez-Rodriguez, P.Pistor, How small amounts of Ge modify the formation pathways and crystallization of kesterites, Energy Environ. Sci. (2017) 0–29. doi:10.1039/C7EE02318A.
    [76] G.M.Ford, Q.Guo, R.Agrawal, H.W.Hillhouse, Earth abundant element Cu2Zn(Sn1-xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% Efficient device fabrication, Chem. Mater. 23 (2011) 2626–2629. doi:10.1021/cm2002836.
    [77] C.J.Hages, S.Levcenco, C.K.Miskin, J.H.Alsmeier, D.Abou‐Ras, R.G.Wilks, M.Bär, T.Unold, R.Agrawal, Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses, Prog. Photovoltaics Res. Appl. (2013).
    [78] S.Kim, K.M.Kim, H.Tampo, H.Shibata, S.Niki, Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency, Appl. Phys. Express. 9 (2016) 1–5. doi:10.7567/APEX.9.102301.
    [79] I.Kim, K.Kim, Y.Oh, K.Woo, G.Cao, S.Jeong, J.Moon, Bandgap-graded Cu2Zn(Sn1-xGex)S 4 thin-film solar cells derived from metal chalcogenide complex ligand capped nanocrystals, Chem. Mater. 26 (2014) 3957–3965. doi:10.1021/cm501568d.
    [80] S.Giraldo, M.Neuschitzer, T.Thersleff, S.Lõpez-Marino, Y.Sánchez, H.Xie, M.Colina, M.Placidi, P.Pistor, V.Izquierdo-Roca, K.Leifer, A.Pérez-Rodríguez, E.Saucedo, Large Efficiency Improvement in Cu2ZnSnSe4 Solar Cells by Introducing a Superficial Ge Nanolayer, Adv. Energy Mater. 5 (2015) 1–6. doi:10.1002/aenm.201501070.
    [81] Z.Yuan, S.Chen, H.Xiang, X.Gong, A.Walsh, J.Park, I.Repins, S.-H.Wei, Engineering Solar Cell Absorbers by Exploring the Band Alignment and Defect Disparity: The Case of Cu- and Ag-Based Kesterite Compounds, Adv. Funct. Mater. 25 (2015) 6733–6743. doi:10.1002/adfm.201502272.
    [82] Z.Y.Xiao, Y.F.Li, B.Yao, R.Deng, Z.H.Ding, T.Wu, G.Yang, C.R.Li, Z.Y.Dong, L.Liu, L.G.Zhang, H.F.Zhao, Bandgap engineering of Cu2CdxZn1-xSnS 4 alloy for photovoltaic applications: A complementary experimental and first-principles study, J. Appl. Phys. 114 (2013). doi:10.1063/1.4829457.
    [83] C.Yan, K.K.Sun, J.Huang, S.Johnston, F.Liu, B.P.Veettil, K.K.Sun, A.Pu, F.Zhou, J.A.Stride, M.A.Green, X.Hao, Beyond 11% Efficient Sulfide Kesterite Cu 2 Zn x Cd 1– x SnS 4 Solar Cell: Effects of Cadmium Alloying, ACS Energy Lett. 2 (2017) 930–936. doi:10.1021/acsenergylett.7b00129.
    [84] J.Li, D.Wang, X.Li, Y.Zeng, Y.Zhang, Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials, Adv. Sci. 5 (2018). doi:10.1002/advs.201700744.
    [85] J.Huang, C.Yan, K.Sun, F.Liu, M.Green, X.Hao, Understanding the effect of Cadmium alloying in high-efficiency sulphide kesterite Cu2ZnxCd1-xSnS4 solar cell by PDS and HRSTEM, 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 - A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC. (2018) 827–830. doi:10.1109/PVSC.2018.8547410.
    [86] J.Fu, Q.Tian, Z.Zhou, D.Kou, Y.Meng, W.Zhou, S.Wu, Improving the Performance of Solution-Processed Cu2ZnSn(S,Se)4 Photovoltaic Materials by Cd2+ Substitution, Chem. Mater. 28 (2016) 5821–5828. doi:10.1021/acs.chemmater.6b02111.
    [87] S.Nakamura, T.Maeda, T.Tabata, T.Wada, First-principles study of indium-free photovoltaic compounds Ag<inf>2</inf>ZnSnSe<inf>4</inf> and Cu<inf>2</inf>ZnSnSe<inf>4</inf>, IEEE, 2011. doi:10.1109/PVSC.2011.6186521.
    [88] W.Gong, T.Tabata, K.Takei, M.Morihama, T.Maeda, T.Wada, Crystallographic and optical properties of (Cu,Ag)2ZnSnS4 and (Cu,Ag)2ZnSnSe4 solid solutions, Phys. Status Solidi. 12 (2015) 700–703. doi:10.1002/pssc.201400343.
    [89] C.J.Hages, M.J.Koeper, R.Agrawal, Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying, Sol. Energy Mater. Sol. Cells. 145 (2016) 342–348. doi:10.1016/j.solmat.2015.10.039.
    [90] T.Gershon, Y.S.Lee, P.Antunez, R.Mankad, S.Singh, D.Bishop, O.Gunawan, M.Hopstaken, R.Haight, Photovoltaic Materials and Devices Based on the Alloyed Kesterite Absorber (AgxCu1–x)2ZnSnSe4, Adv. Energy Mater. 6 (2016) 1502468. doi:10.1002/aenm.201502468.
    [91] T.Gershon, K.Sardashti, O.Gunawan, R.Mankad, S.Singh, Y.S.Lee, J.A.Ott, A.Kummel, R.Haight, Photovoltaic Device with over 5% Efficiency Based on an n-Type Ag2ZnSnSe4Absorber, Adv. Energy Mater. 6 (2016) 1601182. doi:10.1002/aenm.201601182.
    [92] Y.Qi, Q.Tian, Y.Meng, D.Kou, Z.Zhou, W.Zhou, S.Wu, Elemental Precursor Solution Processed (Cu 1– x Ag x ) 2 ZnSn(S,Se) 4 Photovoltaic Devices with over 10% Efficiency, ACS Appl. Mater. Interfaces. 9 (2017) 21243–21250. doi:10.1021/acsami.7b03944.
    [93] Y.-F.Qi, D.-X.Kou, W.-H.Zhou, Z.-J.Zhou, Q.-W.Tian, Y.-N.Meng, X.-S.Liu, Z.Du, S.-X.Wu, Engineering of Interface Band Bending and Defects Elimination via Ag-graded active layer for efficient (Cu,Ag)2ZnSn(S,Se)4 Solar Cells, Energy Environ. Sci. 10 (2017) 2401–2410. doi:10.1039/C7EE01405H.
    [94] S.H.Hadke, S.Levcenko, S.Lie, C.J.Hages, J.A.Márquez, T.Unold, L.H.Wong, Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10% Efficiency, Adv. Energy Mater. 8 (2018) 1–9. doi:10.1002/aenm.201802540.
    [95] G.Sozzi, S.DiNapoli, R.Menozzi, B.Bissig, S.Buecheler, A.N.Tiwari, Impact of front-side point contact/passivation geometry on thin-film solar cell performance, Sol. Energy Mater. Sol. Cells. 165 (2017) 94–102. doi:10.1016/j.solmat.2017.02.031.
    [96] J.Melskens, B.W.H.Van DeLoo, B.Macco, L.E.Black, S.Smit, W.M.M.Kessels, Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects, IEEE J. Photovoltaics. 8 (2018) 373–388. doi:10.1109/JPHOTOV.2018.2797106.
    [97] Y.S.Lee, T.Gershon, T.K.Todorov, W.Wang, M.T.Winkler, M.Hopstaken, O.Gunawan, J.Kim, Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu2ZnSn(S,Se)4 Thin-Film Solar Cells, Adv. Energy Mater. 6 (2016) 2–6. doi:10.1002/aenm.201600198.
    [98] J.Park, J.Huang, J.Yun, F.Liu, Z.Ouyang, H.Sun, C.Yan, K.Sun, K.Kim, J.Seidel, S.Chen, M.A.Green, X.Hao, The Role of Hydrogen from ALD-Al2O3 in Kesterite Cu2ZnSnS4 Solar Cells: Grain Surface Passivation, Adv. Energy Mater. 8 (2018) 3–9. doi:10.1002/aenm.201701940.
    [99] J.Kim, S.Park, S.Ryu, J.Oh, B.Shin, Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation, Prog. Photovoltaics Res. Appl. 25 (2017) 308–317. doi:https://doi.org/10.1002/pip.2864.
    [100] H.Sun, K.Sun, J.Huang, C.Yan, F.Liu, J.Park, A.Pu, J.A.Stride, M.A.Green, X.Hao, Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface, ACS Appl. Energy Mater. 1 (2018) 154–160. doi:10.1021/acsaem.7b00044.
    [101] S.Ranjbar, A.Hadipour, B.Vermang, M.Batuk, J.Hadermann, S.Garud, S.Sahayaraj, M.Meuris, G.Brammertz, A.F.DaCunha, J.Poortmans, P-N junction passivation in kesterite solar cells by use of solution-processed TiO2 layer, IEEE J. Photovoltaics. 7 (2017) 1130–1135. doi:10.1109/JPHOTOV.2017.2692208.
    [102] J.Löckinger, S.Nishiwaki, B.Bissig, G.Degutis, Y.E.Romanyuk, S.Buecheler, A.N.Tiwari, The use of HfO 2 in a point contact concept for front interface passivation of Cu(In,Ga)Se 2 solar cells, Sol. Energy Mater. Sol. Cells. 195 (2019) 213–219. doi:10.1016/j.solmat.2019.03.009.
    [103] P.Reinhard, B.Bissig, F.Pianezzi, H.Hagendorfer, G.Sozzi, R.Menozzi, C.Gretener, S.Nishiwaki, S.Buecheler, A.N.Tiwari, Alkali-templated surface nanopatterning of chalcogenide thin films: A novel approach toward solar cells with enhanced efficiency, Nano Lett. 15 (2015) 3334–3340. doi:10.1021/acs.nanolett.5b00584.
    [104] C.H.Cai, S.Y.Wei, W.C.Huang, J.Lin, T.H.Yeh, C.H.Lai, Efficiency enhancement by adding SnS powder during selenization for Cu2ZnSn(S,Se)4 thin film solar cells, Sol. Energy Mater. Sol. Cells. 145 (2016) 296–302. doi:10.1016/j.solmat.2015.10.037.
    [105] C.Li, S.C.Minne, B.Pittenger, A.Mednick, Simultaneous Electrical and Mechanical Property Mapping at the Nanoscale with PeakForce TUNA, Bruker Appl. Note AN132. AN132 (2011).
    [106] S.S.Hegedus, W.N.Shafarman, Thin-film solar cells: Device measurements and analysis, Prog. Photovoltaics Res. Appl. 12 (2004) 155–176. doi:10.1002/pip.518.
    [107] J.T.Heath, J.D.Cohen, W.N.Shafarman, Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling, J. Appl. Phys. 95 (2004) 1000–1010. doi:10.1063/1.1633982.
    [108] T.Walter, R.Herberholz, C.Müller, H.W.Schock, Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions, J. Appl. Phys. 80 (1996) 4411. doi:10.1063/1.363401.
    [109] H.Cui, X.Liu, F.Liu, X.Hao, N.Song, C.Yan, Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact, Appl. Phys. Lett. 104 (2014) 2–6. doi:10.1063/1.4863951.
    [110] S.Chen, A.Walsh, Y.Luo, J.H.Yang, X.G.Gong, S.H.Wei, Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors, Phys. Rev. B - Condens. Matter Mater. Phys. 82 (2010) 1–8. doi:10.1103/PhysRevB.82.195203.
    [111] M.A.Hossain, Z.Tianliang, L.K.Keat, L.Xianglin, R.R.Prabhakar, S.K.Batabyal, S.G.Mhaisalkar, L.H.Wong, Synthesis of Cu(In,Ga)(S,Se)2 thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10.5%, J. Mater. Chem. A. 3 (2015) 4147–4154. doi:10.1039/C4TA05783J.
    [112] S.Lie, J.M.R.Tan, W.Li, S.W.Leow, Y.F.Tay, D.M.Bishop, O.Gunawan, L.H.Wong, Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution, J. Mater. Chem. A. 6 (2018) 1540–1550. doi:10.1039/c7ta09668b.
    [113] M.H.Sayed, J.Schoneberg, J.Parisi, L.Gütay, Influence of silver incorporation on CZTSSe solar cells grown by spray pyrolysis, Mater. Sci. Semicond. Process. 76 (2018) 31–36. doi:10.1016/j.mssp.2017.12.007.
    [114] T.H.Nguyen, T.Kawaguchi, J.Chantana, T.Minemoto, T.Harada, S.Nakanishi, S.Ikeda, Structural and Solar Cell Properties of a Ag-Containing Cu<inf>2</inf>ZnSnS<inf>4</inf>Thin Film Derived from Spray Pyrolysis, ACS Appl. Mater. Interfaces. 10 (2018) 2–10. doi:10.1021/acsami.7b14929.
    [115] L.Dermenji, M.Guc, G.Gurieva, T.Dittrich, J.Rappich, N.Curmei, L.Bruc, D.A.Sherban, A.V.Simashkevich, S.Schorr, E.Arushanov, Thin films of (AgxCu1−x)2ZnSn(S,Se)4 (x = 0.05–0.20) prepared by spray pyrolysis, Thin Solid Films. 690 (2019) 1–6. doi:10.1016/j.tsf.2019.137532.
    [116] D.Wang, J.Wu, X.Liu, L.Wu, J.Ao, W.Liu, Y.Sun, Y.Zhang, Formation of the front-gradient bandgap in the Ag doped CZTSe thin films and solar cells, J. Energy Chem. 35 (2019) 188–196. doi:10.1016/j.jechem.2019.03.026.
    [117] J.C.W.Ho, T.Zhang, K.K.Lee, S.K.Batabyal, A.I.Y.Tok, L.H.Wong, Spray pyrolysis of CuIn(S,Se)2 solar cells with 5.9% efficiency: A method to prevent Mo oxidation in ambient atmosphere, ACS Appl. Mater. Interfaces. 6 (2014) 6638–6643. doi:10.1021/am500317m.
    [118] T.H.Nguyen, T.Harada, S.Nakanishi, S.Ikeda, Cu<inf>2</inf>ZnSnS<inf>4</inf>-based thin film solar cells with more than 8% conversion efficiency obtained by using a spray pyrolysis technique, 2016 IEEE 43rd Photovolt. Spec. Conf. (2016) 470–472. doi:10.1109/PVSC.2016.7749637.
    [119] Y.Gong, R.Qiu, C.Niu, J.Fu, E.Jedlicka, R.Giridharagopal, Q.Zhu, Y.Zhou, W.Yan, S.Yu, J.Jiang, S.Wu, D.S.Ginger, W.Huang, H.Xin, Ag Incorporation with Controlled Grain Growth Enables 12.5% Efficient Kesterite Solar Cell with Open Circuit Voltage Reached 64.2% Shockley–Queisser Limit, Adv. Funct. Mater. 31 (2021) 1–11. doi:10.1002/adfm.202101927.
    [120] M.Dimitrievska, G.Gurieva, H.Xie, A.Carrete, A.Cabot, E.Saucedo, A.Pérez-Rodríguez, S.Schorr, V.Izquierdo-Roca, Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1-x)4 solid solutions, J. Alloys Compd. 628 (2015) 464–470. doi:10.1016/j.jallcom.2014.12.175.
    [121] Y.Zhao, X.Han, L.Chang, J.Li, C.Dong, Y.Fang, J.Li, Optimization of DMSO-based precursor solution by H2O additive for performance enhancement of kesterite photovoltaic devices, Sol. Energy Mater. Sol. Cells. 179 (2018) 427–434. doi:10.1016/j.solmat.2018.02.001.
    [122] A.Phuruangrat, T.Thongtem, S.Thongtem, Effects of ethylenediamine to water ratios on cadmium sulfide nanorods and nanoparticles produced by a solvothermal method, Mater. Lett. 63 (2009) 1538–1541. doi:10.1016/j.matlet.2009.04.005.
    [123] T.Tabata, T.Maeda, T.Wada, Preparation and properties of In-free photovoltaic material (Cu1-xAgx)2ZnSnSe4, in: EMRS Spring Meet., 2011.
    [124] A.Redinger, K.Hönes, X.Fontané, V.Izquierdo-Roca, E.Saucedo, N.Valle, A.Pérez-Rodríguez, S.Siebentritt, Detection of a ZnSe secondary phase in coevaporated Cu[sub 2]ZnSnSe[sub 4] thin films, Appl. Phys. Lett. 98 (2011) 101907. doi:10.1063/1.3558706.
    [125] L.Kuipers, R.E.Palmer, Influence of island mobility on island size distributions in surface growth, Phys. Rev. B. 53 (1996) R7646–R7649. doi:10.1103/PhysRevB.53.R7646.
    [126] W.-C.Wen, R.V.Chepulskii, L.-W.Wang, S.Curtarolo, C.-H.Lai, Accelerating disorder–order transitions of FePt by preforming a metastable AgPt phase, Acta Mater. 60 (2012) 7258–7264. doi:10.1016/j.actamat.2012.09.045.
    [127] J.H.Boyle, B.E.McCandless, W.N.Shafarman, R.W.Birkmire, Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys, J. Appl. Phys. 115 (2014) 0–8. doi:10.1063/1.4880243.
    [128] D.B.Khadka, S.Y.Kim, J.H.Kim, Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells, J. Phys. Chem. C. 120 (2016) 4251–4258. doi:10.1021/acs.jpcc.5b11594.
    [129] S.Giraldo, C.M.Ruiz, M.Espíndola-Rodríguez, Y.Sánchez, M.Placidi, D.Cozza, D.Barakel, L.Escoubas, A.Pérez-Rodríguez, E.Saucedo, Optical and electrical properties of In-doped Cu2ZnSnSe4, Sol. Energy Mater. Sol. Cells. 151 (2016) 44–51. doi:10.1016/j.solmat.2016.02.024.
    [130] S.Giraldo, E.Saucedo, M.Neuschitzer, F.Oliva, M.Placidi, X.Alcobe, V.Izquierdo-Roca, S.Kim, H.Tampo, H.Shibata, A.Perez-Rodriguez, P.Pistor, How small amounts of Ge modify the formation pathways and crystallization of kesterites, Energy Environ. Sci. 11 (2018) 582–593. doi:10.1039/C7EE02318A.
    [131] C.M.Sutter-Fella, J.A.Stückelberger, H.Hagendorfer, F.LaMattina, L.Kranz, S.Nishiwaki, A.R.Uhl, Y.E.Romanyuk, A.N.Tiwari, Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4thin film solar cells, Chem. Mater. 26 (2014) 1420–1425. doi:10.1021/cm403504u.
    [132] J.Jia, Y.Li, B.Yao, Z.Ding, R.Deng, Y.Jiang, Y.Sui, Band offsets of Ag 2 ZnSnSe 4 /CdS heterojunction: An experimental and first-principles study, J. Appl. Phys. 121 (2017) 215305. doi:10.1063/1.4984315.
    [133] K.Wei, G.S.Nolas, Synthesis and Characterization of Nanostructured Stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for Thermoelectric Applications., ACS Appl. Mater. Interfaces. 7 (2015) 9752–7. doi:10.1021/acsami.5b01617.
    [134] Y.Jiang, B.Yao, Y.Li, Z.Ding, H.Luan, J.Jia, Y.Li, K.Shi, Y.Sui, B.Zhang, Structure, optical and electrical properties of (Cu1-xAgx)2ZnSn(S,Se)4alloy thin films for photovoltaic application, Mater. Sci. Semicond. Process. 81 (2018) 54–59. doi:10.1016/j.mssp.2018.03.014.
    [135] H.S.Duan, W.Yang, B.Bob, C.J.Hsu, B.Lei, Y.Yang, The role of sulfur in solution-processed Cu2ZnSn(S,Se) 4 and its effect on defect properties, Adv. Funct. Mater. 23 (2013) 1466–1471. doi:10.1002/adfm.201201732.
    [136] O.Gunawan, T.Gokmen, C.W.Warren, J.D.Cohen, T.K.Todorov, D.A.R.Barkhouse, S.Bag, J.Tang, B.Shin, D.B.Mitzi, Electronic properties of the Cu 2ZnSn(Se,S) 4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods, Appl. Phys. Lett. 100 (2012) 253905. doi:10.1063/1.4729751.
    [137] L.C.Kimerling, Influence of deep traps on the measurement of free-carrier distributions in semiconductors by junction capacitance techniques, J. Appl. Phys. 45 (1974) 1839. doi:10.1063/1.1663500.
    [138] D.Muecke, T.Lavrenko, R.V.Lorbada, T.Walter, On the Determination of the Back Contact Barrier Height of Cu(In,Ga)(S,Se) 2 Thin Film Solar Cells, 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 - A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC. (2018) 1928–1931. doi:10.1109/PVSC.2018.8547841.
    [139] M.Neuschitzer, J.Marquez, S.Giraldo, M.Dimitrievska, M.Placidi, I.Forbes, V.Izquierdo-Roca, A.Pérez-Rodriguez, E.Saucedo, Voc Boosting and Grain Growth Enhancing Ge-Doping Strategy for Cu2ZnSnSe4 Photovoltaic Absorbers, J. Phys. Chem. C. 120 (2016) 9661–9670. doi:10.1021/acs.jpcc.6b02315.
    [140] J.Li, S.Y.Kim, D.Nam, X.Liu, J.H.Kim, H.Cheong, W.Liu, H.Li, Y.Sun, Y.Zhang, Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells, Sol. Energy Mater. Sol. Cells. 159 (2017) 447–455. doi:10.1016/j.solmat.2016.09.034.
    [141] K.R.Choudhury, Y.Cao, J.VCaspar, W.E.Farneth, Q.Guo, A.S.Ionkin, L.K.Johnson, M.Lu, I.Malajovich, D.Radu, H.D.Rosenfeld, W.Wu, Characterization and understanding of performance losses in a highly efficient solution-processed CZTSSe thin-film solar cell, in: 2012 38th IEEE Photovolt. Spec. Conf., 2012: pp. 1471–1474. doi:10.1109/PVSC.2012.6317874.
    [142] S.Y.Kim, T.R.Rana, J.H.Kim, D.H.Son, K.J.Yang, J.K.Kang, D.H.Kim, Limiting effects of conduction band offset and defect states on high efficiency CZTSSe solar cell, Nano Energy. 45 (2018) 75–83. doi:10.1016/j.nanoen.2017.12.031.
    [143] F.Pianezzi, P.Reinhard, A.Chirilă, B.Bissig, S.Nishiwaki, S.Buecheler, A.N.Tiwari, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells., Phys. Chem. Chem. Phys. 16 (2014) 8843–51. doi:10.1039/c4cp00614c.
    [144] C.P.Thompson, S.Hegedus, W.Shafarman, D.Desai, Temperature dependence of VOC in CdTe and Cu(InGa)(SeS)2-based solar cells, in: 2008 33rd IEEE Photovolatic Spec. Conf., IEEE, 2008: pp. 1–6. doi:10.1109/PVSC.2008.4922548.
    [145] M.Turcu, O.Pakma, U.Rau, Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells, Appl. Phys. Lett. 80 (2002) 2598–2600. doi:10.1063/1.1467621.
    [146] V.Nadenau, U.Rau, A.Jasenek, H.W.Schock, Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis, J. Appl. Phys. 87 (2000) 584–593. doi:10.1063/1.371903.
    [147] K.-J.Yang, J.-H.Sim, B.Jeon, D.-H.Son, D.-H.Kim, S.-J.Sung, D.-K.Hwang, S.Song, D.B.Khadka, J.Kim, J.-K.Kang, Effects of Na and MoS 2 on Cu 2 ZnSnS 4 thin-film solar cell, Prog. Photovoltaics Res. Appl. 23 (2015) 862–873. doi:10.1002/pip.2500.
    [148] W.J.Yin, Y.Wu, S.H.Wei, R.Noufi, M.M.Al-Jassim, Y.Yan, Engineering grain boundaries in Cu2ZnSnSe4 for better cell performance: A first-principle study, Adv. Energy Mater. 4 (2014) 1–7. doi:10.1002/aenm.201300712.
    [149] T.Gershon, B.Shin, N.Bojarczuk, M.Hopstaken, D.B.Mitzi, S.Guha, The role of sodium as a surfactant and suppressor of non-radiative recombination at internal surfaces in Cu2ZnSnS4, Adv. Energy Mater. 5 (2015) 1–8. doi:10.1002/aenm.201400849.
    [150] Y.-R.Lin, V.Tunuguntla, S.-Y.Wei, W.-C.Chen, D.Wong, C.-H.Lai, L.-K.Liu, L.-C.Chen, K.-H.Chen, Bifacial sodium-incorporated treatments: Tailoring deep traps and enhancing carrier transport properties in Cu2ZnSnS4 solar cells, Nano Energy. 16 (2015) 438–445. doi:10.1016/j.nanoen.2015.07.022.
    [151] C.-Y.Liu, Z.-M.Li, H.-Y.Gu, S.-Y.Chen, H.Xiang, X.-G.Gong, Sodium Passivation of the Grain Boundaries in CuInSe 2 and Cu 2 ZnSnS 4 for High-Efficiency Solar Cells, Adv. Energy Mater. 7 (2017) 1601457. doi:10.1002/aenm.201601457.
    [152] S.Tajima, R.Asahi, D.Isheim, D.N.Seidman, T.Itoh, K.I.Ohishi, Sodium distribution in solar-grade Cu2ZnSnS4 layers using atom-probe tomographic technique, Jpn. J. Appl. Phys. 54 (2015) 2–7. doi:10.7567/JJAP.54.112302.
    [153] R.Caballero, C.A.Kaufmann, T.Eisenbarth, M.Cancela, R.Hesse, T.Unold, A.Eicke, R.Klenk, H.W.Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films. 517 (2009) 2187–2190. doi:10.1016/j.tsf.2008.10.085.
    [154] N.K.Elumalai, A.Uddin, Open circuit voltage of organic solar cells: an in-depth review, Energy Environ. Sci. 5692 (2016) 1–5. doi:10.1039/C5EE02871J.
    [155] T.Gershon, Y.S.Lee, R.Mankad, O.Gunawan, T.Gokmen, D.Bishop, B.McCandless, S.Guha, The impact of sodium on the sub-bandgap states in CZTSe and CZTS, Appl. Phys. Lett. 106 (2015) 123905. doi:10.1063/1.4916635.
    [156] D.Azulay, O.Millo, I.Balberg, H.W.Schock, I.Visoly-Fisher, D.Cahen, Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films, Sol. Energy Mater. Sol. Cells. 91 (2007) 85–90. doi:10.1016/j.solmat.2006.08.006.
    [157] J.B.Li, V.Chawla, B.M.Clemens, Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy, Adv. Mater. 24 (2012) 720–723. doi:10.1002/adma.201103470.
    [158] T.Y.Lin, C.H.Chen, W.C.Huang, W.H.Ho, Y.H.Wu, C.H.Lai, Direct probing Se spatial distribution in Cu(InxGa1-x)Se2solar cells: A key factor to achieve high efficiency performance, Nano Energy. 19 (2016) 269–278. doi:10.1016/j.nanoen.2015.11.003.
    [159] D.H.Son, S.H.Kim, S.Y.Kim, Y.I.Kim, J.H.Sim, S.N.Park, D.H.Jeon, D.K.Hwang, S.J.Sung, J.K.Kang, K.J.Yang, D.H.Kim, Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device, J. Mater. Chem. A. 7 (2019) 25279–25289. doi:10.1039/c9ta08310c.
    [160] Nisika, K.Kaur, M.Kumar, Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: A critical review, J. Mater. Chem. A. 8 (2020) 21547–21584. doi:10.1039/d0ta06450e.
    [161] T.Tanaka, T.Sueishi, K.Saito, Q.Guo, M.Nishio, K.M.Yu, W.Walukiewicz, Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films, J. Appl. Phys. 111 (2012) 53522. doi:10.1063/1.3691964.
    [162] S.Lõpez-Marino, Y.Sánchez, M.Placidi, A.Fairbrother, M.Espindola-Rodríguez, X.Fontané, V.Izquierdo-Roca, J.Lõpez-García, L.Calvo-Barrio, A.Pérez-Rodríguez, E.Saucedo, ZnSe etching of Zn-Rich Cu2ZnSnSe4: An oxidation route for improved solar-cell efficiency, Chem. - A Eur. J. 19 (2013) 14814–14822. doi:10.1002/chem.201302589.
    [163] K.Sun, C.Yan, J.Huang, F.Liu, J.Li, H.Sun, Y.Zhang, X.Cui, A.Wang, Z.Fang, J.Cong, Y.Lai, M.A.Green, X.Hao, Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry, J. Mater. Chem. A. 7 (2019) 27289–27296. doi:10.1039/c9ta09576d.
    [164] H.Xie, Y.Sánchez, S.López-Marino, M.Espíndola-Rodríguez, M.Neuschitzer, D.Sylla, A.Fairbrother, V.Izquierdo-Roca, A.Pérez-Rodríguez, E.Saucedo, Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: A chemical route for their selective removal and absorber surface passivation, ACS Appl. Mater. Interfaces. 6 (2014) 12744–12751. doi:10.1021/am502609c.
    [165] K.J.Yang, D.H.Son, S.J.Sung, J.H.Sim, Y.I.Kim, S.N.Park, D.H.Jeon, J.Kim, D.K.Hwang, C.W.Jeon, D.Nam, H.Cheong, J.K.Kang, D.H.Kim, A band-gap-graded CZTSSe solar cell with 12.3% efficiency, J. Mater. Chem. A. 4 (2016) 10151–10158. doi:10.1039/c6ta01558a.
    [166] C.H.Cai, S.Y.Wei, W.C.Huang, C.H.Hsu, W.H.Ho, C.H.Lai, Efficiency enhancement of Cu2ZnSn(S,Se)4 solar cells by S-modified surface layer, Sol. Energy Mater. Sol. Cells. 162 (2017) 21–29. doi:10.1016/j.solmat.2016.12.033.
    [167] D.K.Hwang, B.S.Ko, D.H.Jeon, J.K.Kang, S.J.Sung, K.J.Yang, D.Nam, S.Cho, H.Cheong, D.H.Kim, Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S,Se)4 thin films, Sol. Energy Mater. Sol. Cells. 161 (2017) 162–169. doi:10.1016/j.solmat.2016.11.034.
    [168] J.Andrade-Arvizu, V.Izquierdo-Roca, I.Becerril-Romero, P.Vidal-Fuentes, R.Fonoll-Rubio, Y.Sánchez, M.Placidi, L.Calvo-Barrio, O.Vigil-Galán, E.Saucedo, Is It Possible to Develop Complex S-Se Graded Band Gap Profiles in Kesterite-Based Solar Cells?, ACS Appl. Mater. Interfaces. 11 (2019) 32945–32956. doi:10.1021/acsami.9b09813.
    [169] W.C.Huang, S.Y.Wei, C.H.Cai, W.H.Ho, C.H.Lai, The role of Ag in aqueous solution processed (Ag,Cu)2ZnSn(S,Se)4 kesterite solar cells: Antisite defect elimination and importance of Na passivation, J. Mater. Chem. A. 6 (2018) 15170–15181. doi:10.1039/c8ta02950d.
    [170] W.Li, Z.Su, J.M.R.Tan, S.Y.Chiam, H.L.Seng, S.Magdassi, L.H.Wong, Revealing the Role of Potassium Treatment in CZTSSe Thin Film Solar Cells, Chem. Mater. 29 (2017) 4273–4281. doi:10.1021/acs.chemmater.7b00418.
    [171] J.Lee, T.Enkhbat, G.Han, M.H.Sharif, E.Enkhbayar, H.Yoo, J.H.Kim, S.Y.Kim, J.H.Kim, Over 11 % efficient eco-friendly kesterite solar cell: Effects of S-enriched surface of Cu2ZnSn(S,Se)4 absorber and band gap controlled (Zn,Sn)O buffer, Nano Energy. 78 (2020) 105206. doi:10.1016/j.nanoen.2020.105206.
    [172] C.Yan, J.Huang, K.Sun, S.Johnston, Y.Zhang, H.Sun, A.Pu, M.He, F.Liu, K.Eder, L.Yang, J.M.Cairney, N.J.Ekins-Daukes, Z.Hameiri, J.A.Stride, S.Chen, M.A.Green, X.Hao, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nat. Energy. 3 (2018) 764–772. doi:10.1038/s41560-018-0206-0.
    [173] M.E.Erkan, V.Chawla, M.A.Scarpulla, Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3, J. Appl. Phys. 119 (2016). doi:10.1063/1.4948947.
    [174] M.A.Curado, J.P.Teixeira, M.Monteiro, E.F.M.Ribeiro, R.C.Vilão, H.V.Alberto, J.M.V.Cunha, T.S.Lopes, K.Oliveira, O.Donzel-Gargand, A.Hultqvist, S.Calderon, M.A.Barreiros, W.Chiappim, J.P.Leitão, A.G.Silva, T.Prokscha, C.Vinhais, P.A.Fernandes, P.M.P.Salomé, Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits, Appl. Mater. Today. 21 (2020). doi:10.1016/j.apmt.2020.100867.
    [175] B.Vermang, V.Fjällström, J.Pettersson, P.Salomé, M.Edoff, Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts, Sol. Energy Mater. Sol. Cells. 117 (2013) 505–511. doi:10.1016/j.solmat.2013.07.025.
    [176] Y.Wan, S.K.Karuturi, C.Samundsett, J.Bullock, M.Hettick, D.Yan, J.Peng, P.R.Narangari, S.Mokkapati, H.H.Tan, C.Jagadish, A.Javey, A.Cuevas, Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction, ACS Energy Lett. 3 (2018) 125–131. doi:10.1021/acsenergylett.7b01153.
    [177] P.R.Narangari, S.K.Karuturi, Y.Wu, J.Wong-Leung, K.Vora, M.Lysevych, Y.Wan, H.H.Tan, C.Jagadish, S.Mokkapati, Ultrathin Ta 2 O 5 electron-selective contacts for high efficiency InP solar cells, Nanoscale. 11 (2019) 7497–7505. doi:10.1039/c8nr09932d.
    [178] M.D.Anderson, B.Aitchison, D.C.Johnson, Corrosion Resistance of Atomic Layer Deposition-Generated Amorphous Thin Films, ACS Appl. Mater. Interfaces. 8 (2016) 30644–30648. doi:10.1021/acsami.6b11231.
    [179] A.Fairbrother, E.García-Hemme, V.Izquierdo-Roca, X.Fontané, F.A.Pulgarín-Agudelo, O.Vigil-Galán, A.Pérez-Rodríguez, E.Saucedo, Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu2ZnSnS4 Solar Cells, J. Am. Chem. Soc. 134 (2012) 8018–8021. doi:10.1021/ja301373e.
    [180] R.Kho, C.L.Torres-Martínez, R.K.Mehra, A simple colloidal synthesis for gram-quantity production of water- soluble ZnS nanocrystal powders, J. Colloid Interface Sci. 227 (2000) 561–566. doi:10.1006/jcis.2000.6894.
    [181] B.Dong, L.Cao, G.Su, W.Liu, H.Qu, H.Zhai, Water-soluble ZnS:Mn/ZnS core/shell nanoparticles prepared by a novel two-step method, J. Alloys Compd. 492 (2010) 363–367. doi:10.1016/j.jallcom.2009.11.096.
    [182] S.Garud, N.Gampa, T.G.Allen, R.Kotipalli, D.Flandre, M.Batuk, J.Hadermann, M.Meuris, J.Poortmans, A.Smets, B.Vermang, Surface Passivation of CIGS Solar Cells Using Gallium Oxide, Phys. Status Solidi Appl. Mater. Sci. 215 (2018) 1–6. doi:10.1002/pssa.201700826.
    [183] R.Scaffidi, D.G.Buldu, G.Brammertz, J.deWild, T.Kohl, G.Birant, M.Meuris, J.Poortmans, D.Flandre, B.Vermang, Comparative Study of Al2O3 and HfO2 for Surface Passivation of Cu(In,Ga)Se2 Thin Films: An Innovative Al2O3/HfO2 Multistack Design, Phys. Status Solidi Appl. Mater. Sci. 218 (2021) 1–8. doi:10.1002/pssa.202100073.
    [184] S.Bourdais, C.Choné, B.Delatouche, A.Jacob, G.Larramona, C.Moisan, A.Lafond, F.Donatini, G.Rey, S.Siebentritt, A.Walsh, G.Dennler, Is the Cu/Zn Disorder the Main Culprit for the Voltage Deficit in Kesterite Solar Cells?, Adv. Energy Mater. 6 (2016) 1–21. doi:10.1002/aenm.201502276.

    QR CODE