簡易檢索 / 詳目顯示

研究生: 江政儒
Chiang Cheng-Ju
論文名稱: 新穎性細胞貼附材質的開發:重組日本腦炎病毒蛋白
Recombinant Glycosaminoglycan-binding proteins of Japanese Encephalitis Virus as a novel cell adhesive material
指導教授: 吳夙欽
Wu Suh-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 64
中文關鍵詞: 醣胺素細胞貼附套膜蛋白醣胺素結合區細胞外間質
外文關鍵詞: glycosaminoglycan, cell adhesion, envelope, GAG-binding site, extracellular matrix
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞外間質為細胞生長的環境,聚集細胞形成組織,藉由訊號傳遞調控細胞的生長、分裂與分化,並且調節組織內不同類型細胞的功能,另一方面也提供細胞遷移的路徑。許多細胞外間質蛋白具有多重結合區域,如醣胺素結合區和間質內多醣體的結合或是細胞貼附序列和細胞表面受器的結合,使整個細胞外間質與細胞緊密的結合在一起。研究指出在日本腦炎病毒套膜蛋白的兩個區域E286-312以及E391-416可能是為醣胺素結合區,此區域可以和細胞表面的醣胺素結合,被認為是病毒感染細胞時,進行細胞貼附的關鍵。因此,以帶有醣胺素結合區的重組日本腦炎病毒套膜片段蛋白分析細胞貼附的狀況,進一步評估此蛋白發展為人工細胞外間質材料的可能性為本研究的目的。實驗中日本腦炎病毒套膜蛋白主要分成兩個片段,其中一個片段涵蓋了被推測是為醣胺素結合區的區域 (JEV E277-420/32a),並且運用點突變的方式在同一片段引入一RGD細胞貼附序列(JEV RGD/32a),另外的一個片段則不涵蓋被推測是為醣胺素結合區的區域(JEV E292-402/32a)。利用大腸桿菌表現系統生產重組蛋白,接著以再次摺疊的方式進行內涵體蛋白的純化。最後以細胞貼附分析測試不同片段的重組日本腦炎病毒套膜蛋白對於BHK-21細胞是否有幫助貼附的效果。結果顯示JEV E292-402/32a、JEV E277-420/32a以及JEV RGD/32a能夠幫助BHK-21細胞的貼附,並在蛋白進行固定濃度為10μg/ml時細胞貼附達到飽和,而肝素與細胞混合後再加入蛋白處理過的96孔培養皿,能夠產生抑制貼附的效果。在有血清的條件下,不論肝素是先與細胞混合或先與重組蛋白混合,JEV E277-420/32a以及JEV RGD/32a幫助細胞貼附的程度會增加。實驗的結果顯示血清中可能有某些成分和肝素以及JEV E277-420/32a、JEV RGD/32a重組蛋白產生未知的作用增加BHK-21細胞貼附的程度。


    The major function of extracellular matrix (ECM) is aggregating cells into tissues, signaling cells to grow, proliferate, and differentiate, coordinating the diverse function of cells of different types, and providing a path for cell migration. Multiadhesive matrix proteins, such as fibronectin and laminin, which contain several binding domains including GAG-binding regions and cell-binding sequences, attach cells to the matrix. It has been proposed that two putative GAG-binding regions, E286-312 and E391-416, capable of binding to the GAGs on the surface of cells reside in the envelope protein of Japanese encephalitis virus. Virus can attach to cells by binding to the GAGs on the surface of cells, which was considered as an indispensable step in the early stage of virus infection. Hence, by measuring the adhesion of cells to the immobilized fragments of E protein will we be able to understand the interaction between cells and protein and to estimate the potential of a cell-adhesive material out of this protein. Briefly, the gene of JEV E protein was constructed into pET32a vector as JEV E292-402/32a and JEV E277-420/32a, in addition, a single amino acid mutation was introduced to create an RGD-motif-carrying mutant, JEV RGD/32a. After expressed in an E.coli. system, pure proteins obtained by on-column refolding process and typical IMAC procedure were subsequently ready for cell adhesion assay. JEV E292-402/32a, JEV E277-420/32a, and JEV RGD/32a coated microplates promoted BHK-21 cell attachment in a dose-dependent manner while heparin inhibited BHK-21 cell attachment to JEV E292-402/32a, JEV E277-420/32a, and JEV RGD/32a coated microplates. Under serum condition, however, the results were quite different. When heparin added to cells, on the contrary, BHK-21 cell attachment to JEV E277-420/32a and JEV RGD/32a coated microplates was profoundly increased, but cell attachment to JEV E292-402/32a coated microplates remained inhibited. If heparin was mixed with proteins, an enhanced BHK-21 cell attachment to JEV E277-420/32a and JEV RGD/32a coated microplates was detected, and no prominent effect was found on JEV E292-402/32a coated microplates. JEV E277-420/32a and JEV RGD/32a coated microplates enhanced BHK-21 cell attachment whether we combine heparin with cells or proteins, which possibly indicated the involvement of certain serum factor in cell adhesion.

    頁次 第一章 序論 1.1 細胞外間質…………………………………..………..………1 1.2 細胞表面蛋白多醣………………………...…….……………2 1.3 日本腦炎病毒與其套膜蛋白……………..….…….…………4 1.4 醣胺素結合區與細胞貼附序列………………………………6 1.5 幫助細胞貼附的蛋白…………………………………………8 1.6 細胞黏附性蛋白的應用………………………………………9 1.7 實驗目的……………………………………………………..10 第二章 材料與方法 2.1 病毒與菌株 2.1.1 日本腦炎病毒………………………………………12 2.1.2大腸桿菌菌株…………………………………….…12 2.2 細胞株………………………………………….……………12 2.3 醱酵槽……………………………………………..……...…13 2.4 日本腦炎病毒套膜蛋白基因片段之載體構築點突變…….13 2.5 日本腦炎病毒套膜重組蛋白之表現,製備與純化 2.5.1 重組蛋白之表現……………………………………15 2.5.2 重組蛋白溶液的製備………………………………16 2.5.3 重組蛋白之純化………………………....…………17 2.6 內涵體蛋白的純化………………………………….………19 2.7 細胞貼附能力分析…………………………...………..……20 第三章 結果 3.1日本腦炎病毒套膜蛋白基因片段之載體構築與點突變…...22 3.2日本腦炎病毒套膜重組蛋白之表現,製備與純化 3.2.1 細菌生長曲線與蛋白表現情形 …………………24 3.2.2 重組蛋白之純化………………………..…………25 3.3內涵體蛋白的純化……………………………………...……26 3.4細胞貼附能力分析 3.4.1細胞貼附能力分析…………………………...……27 3.4.2肝素對細胞貼附能力的影響……………...………27 第四章 討論 4.1日本腦炎病毒套膜重組蛋白在大腸桿菌之表現情形…...…30 4.2內涵體蛋白的純化………………………………….…..……32 4.3細胞貼附能力分析………………………………….…..……34 第五章 結論………………………………………..……………..…38 參考文獻………………………………………………………………39 圖表……………………………………………………………………44 圖目次 頁次 圖1.日本腦炎套膜蛋白片段序列以及實驗的目標蛋白…………….44 圖2.pET22b以及pET32a表現載體意示圖………………………..…46 圖3.表現載體構築流程……………………………………………….47 圖4.重組蛋白表現、純化流程……………………………………….48 圖5.內涵體蛋白的純化流程示意圖………………………………….49 圖6.細胞貼附分析流程示意圖……………………………………….49 圖7. JEV E261-420/22b重組蛋白以IPTG誘導表現之結果…….….….50 圖8. JEV E292-402/22b重組蛋白以IPTG誘導表現之結果………..….50 圖9. JEV E261-420/32a重組蛋白以IPTG誘導表現之結果………..….51 圖10. JEV E292-402/32a重組蛋白以IPTG誘導表現之結果………….51 圖11.分析JEV E261-420/32a重組蛋白溶解性之結果…………………52 圖12.分析JEV E292-402/32a重組蛋白溶解性之結果…………………52 圖13. JEV E277-420/32a細菌生長曲線和IPTG誘導蛋白表現情形….53 圖14. JEV RGD/32a細菌生長曲線和IPTG誘導蛋白表現情形……54 圖15. JEV E277-420/32a和JEV RGD/32a蛋白溶解性之分析結果…...55 圖16. JEV E277-420/32a重組蛋白的純化……………………….……..55 圖17. JEV RGD/32a重組蛋白的純化……………………………..…56 圖18. JEV E292-402/32a重組蛋白的純化……………………………...56 圖19. JEV E277-420/32a和JEV RGD/32a內涵體蛋白的純化……..…57 圖20.純化後的蛋白以及西方墨點…………………………………...58 圖21.重組蛋白對細胞貼附的關係…………………………………...59 圖22.細胞貼附一個小時後的結果…………………………………...60 圖23. Heparin對細胞進行貼附所造成的影響………………………61 圖24.在有血清的條件下Heparin和細胞混合後細胞貼附的結果.…63 圖25.在有血清的條件下Heparin和蛋白混合後細胞貼附的結果….64

    Babic AM, Chen CC, Lau LF. (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 19(4):2958-66.

    Beauvais DM, Rapraeger AC. (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol. 2(1):3.

    Belting M. (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. 28(3):145-51. Review.

    Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 68:729-77. Review.

    Capila I, Linhardt RJ. (2002) Heparin-protein interactions. Angew Chem Int Ed Engl. 41(3):391-412. Review

    Chang HH, Kau JH, Lo SJ, Sun DS. (2003) Cell-adhesion and morphological changes are not sufficient to support anchorage-dependent cell growth via non-integrin-mediated attachment. Cell Biol Int. 27(2):123-33.

    Chen CC, Chen N, Lau LF. (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem. 276(13):10443-52.

    Chen N, Chen CC, Lau LF. (2000) Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem. 275(32):24953-61.

    Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 3(8):866-71.

    Clark RA, An JQ, Greiling D, Khan A, Schwarzbauer JE. (2003) Fibroblast migration on fibronectin requires three distinct functional domains. J Invest Dermatol. 121(4):695-705.

    Erdman R, Stahl RC, Rothblum K, Chernousov MA, Carey DJ. (2002) Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3. J Biol Chem. 277(9):7619-25.

    Gillies RJ, Didier N, Denton M. (1986) Determination of cell number in monolayer cultures. Anal Biochem. 159(1):109-13.

    Hirosaki T, Tsubota Y, Kariya Y, Moriyama K, Mizushima H, Miyazaki K. (2002) Laminin-6 is activated by proteolytic processing and regulates cellular adhesion and migration differently from laminin-5. J Biol Chem. 277(51):49287-95.

    Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem. 274(34):24321-7.

    Kavakli K. (1999) Fibrin glue and clinical impact on haemophilia care. Haemophilia. 5(6):392-6. Review.

    Kireeva ML, Lam SC, Lau LF. (1998) Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem. 273(5):3090-6.

    Kueng W, Silber E, Eppenberger U. (1989) Quantification of cells cultured on 96-well plates. Anal Biochem. 182(1):16-9.

    Lin CW, Wu SC. (2003) A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol. 77(4):2600-6.

    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology. 4th ed.
    Mercurius KO, Morla AO. (2001) Cell adhesion and signaling on the fibronectin 1st type III repeat; requisite roles for cell surface proteoglycans and integrins. BMC Cell Biol. 2(1):18

    Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. (2001) The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for plasmodium sporozoite attachment to target cells. J Biol Chem. 276(29):26784-91.

    Richard C, Roghani M, Moscatelli D. (2000) Fibroblast growth factor (FGF)-2 mediates cell attachment through interactions with two FGF receptor-1 isoforms and extracellular matrix or cell-associated heparan sulfate proteoglycans. Biochem Biophys Res Commun. 276(2):399-405.

    Rohde LH, Julian J, Babaknia A, Carson DD. (1996) Cell surface expression of HIP, a novel heparin/heparan sulfate binding protein, of human uterine epithelial cells and cell lines. J Biol Chem. 271(20):11824-30.

    Scragg MA, Ferreira LR. (1991) Evaluation of different staining procedures for the quantification of fibroblasts cultured in 96-well plates. Anal Biochem. 198(1):80-5.

    Shikano S, Bonkobara M, Zukas PK, Ariizumi K. (2001) Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem. 276(11):8125-34.

    Simons M, Horowitz A. (2001) Syndecan-4-mediated signalling. Cell Signal. 13(12):855-62. Review.

    Su CM, Liao CL, Lee YL, Lin YL. (2001) Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology. 286(1):206-15.

    Wang FZ, Akula SM, Pramod NP, Zeng L, Chandran B. (2001) Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J Virol. 75(16):7517-27.

    Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B. (2003) Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol. 77(5):3131-47.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE