研究生: |
陳元慶 Chen, Yuan-Ching |
---|---|
論文名稱: |
製作仿生三維小腸絨毛和大腸腺窩微結構支架 Biomimetic Villus and Crypt Array for in Vitro 3 Dimensional Culture of Intestinal Epithelial Cells |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
湯學呈
鄭兆珉 陳毓華 陳秀香 傅建中 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 腸組織工程 、絨毛支架 、腺窩支架 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物醫學工程與醫學研究結腸上皮癌細胞(Caco-2),仍利用傳統培養皿進行細胞培養,培養皿與人體真實結構上差異極大,人體腸道組織是由小腸絨毛與大腸腺窩所組成,皆為三維立體結構,但培養皿為二維平面非三維的立體結構。近期在許多的醫學研究報告中指出二維與三維組織會有明顯的差異,如:細胞與細胞密度、藥物吸收與釋放速率、細胞與細胞之間的相互影響力、細胞生長速度、平面與重直壁細胞的攀附力...等等。因此,本論文的研究重點著重於製作仿小腸絨毛結構支架與大腸腺窩結構支架(Scaffold),提供一個適合腸細胞生長的環境,藉由這個仿生結構可以在體外進行腸道組織的研究,此結構對於生醫與醫學上會有很大的幫助。
本實驗利用微機電製程,以背後曝光技術和SU-8光阻,並參考光學模擬,製作出具有傾斜角度的微針陣列,利用PDMS翻膜得到高分子微針陣列來仿造大腸腺窩與小腸絨毛生理結構,成功製作出高度為350 μm、結構底部半徑為150 μm的小腸絨毛結構;高度為500 μm、結構底部半徑為100 μm的大腸腺窩結構。並在此三維結構在上種植Caco-2細胞,進行細胞培養。
細胞培養的部分已經順利在仿生結構上培養Caco-2細胞形成組織,從共軛焦顯微鏡(Confocal microscope)與電子顯微鏡SEM(Scanning electron microscope)拍攝的結果,Caco-2細胞成功生長於絨毛與腺窩結構組織上。在單位1平方公分面積中,生長在三維腸道結構上的細胞數量約為4.43×105/ ml,在平面的細胞數約為 1.78 ×105 / ml,在立體微結構上細胞生長的數目比平面細胞生長的數量增加了2.5倍;在Caco-2細胞培養兩週後,待細胞完整包覆本三維立體結構,細胞有良好的生長,並在細胞與細胞間形成Tight-junction。
本技術可以用來製作人體內真實小腸絨毛與大腸腺窩組織支架,並進行細胞培養研究,此結構提供了腸細胞三維生長環境,大大改善細胞生長環境。
【1】 Ming Hu, “Use of Caco-2 Cell Monolayers to Study Drug Absorption and Metabolism”, Humana Press Inc , pp.13–19, 2004 .
【2】 Mike K.,“Small Bowel Tissue Engineering Using Small Intestinal Submucosa as a Scaffold” , Journal of Surgical Research , vol.99, pp. 352–358 , 2001.
【3】 Min Lee, Paul C. Y. Chang et al, “Evaluation of small intestinal submucosa as scaffolds for intestinal tissue engineering”, Journal of Surgical Research, vol.147, pp. 168–171, 2008.
【4】 楊志明,組織工程,九州圖書文物有限公司,台灣,2005。
【5】 Khang, G., et al, “Fabrication of tubular porous PLGA scaffold by emulsion freeze-drying method.” Polymer-Korea23, vol.3, pp. 471–477 , 1999
【6】 Jalil, R. and J.R. Nixon. “Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. “ J Microencapsul7, vol.3, pp. 297–325 ,1990.
【7】 Heller, J. “ Controlled drug release from poly(ortho esters).” Ann N Y Acad Sci, vol.446, pp. 51–66, 1985.
【8】 Heller, J. “Controlled Release of Biologically-Active Compounds from Bioerodible Polymers.” Biomaterials1, vol.1, pp. 51–57, 1980.
【9】 Dixit, V., et al, “Functional characteristics of primary rat hepatocytes in monolayers and on three-dimensional PLGA scaffold.” Gastroenterology, vol.116, pp. A1204–A1204, 1999.
【10】Oh, J.H. “In vivo comparison of corneal substitutes using PLGA scaffold, Type I collagen film, Type I collagen film combined with amniotic membrane and lyophilized homologous cornea.” I nvestigative Ophthalmology & Visual Science, vol.43, pp. U1190–U1190, 2002.
【11】Astete, C.E. and C.M. Sabliov “Synthesis and characterization of PLGA nanoparticle. J Biomater Sci Polym Ed17, vol.3, pp. 247–89, 2006.
【12】Grikscheit et al, “Tissue-Engineered Small Intestine Improves Recovery After Massive Small Bowel Resection”, Annals of Surgery ,pp.240, 2004.
【13】JAVAID-UR-REHMAN, “Intestinal Tissue Engineering: Where Do We Stand?”, Surgery Today, vol.38, pp. 484–486 ,2008.
【14】A. Abbott, Nature, “Biology’s new dimension.There’s a big difference between a flat layer of cells and a complex, three- dimensional tissue. But until recently, many biologists have glossed over this fact. Alison Abbott discovers what they’ve been missing.” J Biomater Sci Pol, vol.424, pp. 870–872, 2003.
【15】Park, J. H., M. G. Allen, et al, "Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery." Journal of Controlled Release, vol.104, pp. 51–66, 2005.
【16】McAllister, D. V., P. M. Wang, et al, "Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies." Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp. 13755–13760, 2003.
【17】Ryan F. Donnelly, et al, “Microneedle-based drug delivery system: Microfabrication, drug delivery, and safety.” Drug Delivery, vol.17, pp. 187–207, 2010.
【18】Park, J. H., M. G. Allen, et al, "Polymer microneedles for controlled-release drug delivery." Pharmaceutical Research, vol.23, pp. 1008–1019, 2006.
【19】Park, J. H., Y. K. Yoon, et al, "Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery." Ieee Transactions on Biomedical Engineering, vol.54, pp. 903–913, 2007.
【20】Sullivan, S. P., N. Murthy, et al, "Minimally invasive protein delivery with rapidly dissolving polymer microneedles." Drug Delivery, vol.27,pp.933–936, 2008.
【21】Sullivan, S. P., et al, “ Dissolving polymer microneedle patches for innnfluenza vaccination.” Nature medicine, vol.16, pp. 915–U116, 2010.
【22】Han, M., D. K. Kim, et al, “ Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array.”. Sensors and Actuators B: Chemical,vol 137,pp.1008–1019, 2006.
【23】C. Fu A H. Huang, ”Different methods for the fabrication of UV-LIGA molds using SU-8 with tapered de-molding angles”, Microsyst Techno, vol.113, pp. 293–298, 2007.
【24】Huang, H., W. Yang, et al, "3D high aspect ratio micro structures fabricated by one step UV lithography." Journal of Micromechanics and Microengineering, vol.17, pp. 291–296, 2007.
【25】Ya-Yuan Fu, Shiue-Cheng Tang, “Shiue-Cheng Tang, Microtome-Free imensional Confocal Imaging Method for Visualization of Mouse Intestine With Subcellular-Level Resolution”, Imaging and Advanced Technology continued , 453–465, 2009.
【26】H Huang, W Yang, “3D high aspect ratio micro structures fabricated by one step UV lithography”, J. Micromech. Microeng. , vol.17, pp. 291–296, 2007.
【27】Nick Barker1, Johan H. van Es1, “Identification of stem cells in small intestine and colon by marker gene Lgr5”, Nature , vol.499, 2007.
【28】Toshiro Sato1, Robert G. Vries1, ” Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche”, Nature, vol.459, 2009.