簡易檢索 / 詳目顯示

研究生: 劉 媛
Liu, Yuan
論文名稱: 犧牲試劑及氮化鉭-氧化鎢的光致產氫性能
Photo-induced Hydrogen Evolution Properties of Sacrificial Reagents and Ta3N5/WO3
指導教授: 彭宗平
Perng, Tsong-Pyng
口試委員: 葉君棣
Yeh, Chuin-Tih
吳志明
Wu, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 102
中文關鍵詞: 光觸媒犧牲試劑光致產氫氮化鉭氧化鎢
外文關鍵詞: photocatalytic water splitting, sacrificial reagent, hydrogen evolution, tantalum nitride, tungsten oxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   目前已有許多研究工作致力於尋找具有合適能帶結構的光催化劑應用在光催化產氫。在水解產氫中,理想的高效光催化劑應具有較窄的能隙寬度,以增大可利用的太陽光波長,且導帶位置應高於水的還原電位。此外,電子和電洞的有效分離也有利於光催化效率的提升。本研究目的在於充分利用太陽能,使光催化產氫效率得以有效提高。
      氮化鉭(Ta3N5)的能隙寬度僅約2.0 eV,且導帶略高於水的還原電位,價帶低於水的氧化電位,具有提高可見光催化水解產氫效率的潛力。氧化鎢(WO3)同樣具有適合可見光吸收的窄能帶,且其能帶結構恰能與氮化鉭的能帶結構形成Z-scheme機制,以有效分離電子-電洞對。
      本研究利用簡單的溶膠-凝膠法和高溫退火製備氧化鎢和氮化鉭奈米粉末,使用掃描式電子顯微鏡和X光結晶繞射儀分別確定其表面形貌和化學成分,並通過紫外/可見光吸收光譜確定其能隙寬度。利用氣相色譜儀測量不同的氧化鎢對氮化鉭的比例的混合粉末的產氫量,發現在可見光和全光譜下具有最高產氫效率的氧化鎢對氮化鉭的莫爾比例分別為0.75和0.5。全光譜下,氧化鎢和氮化鉭組成的Z-scheme體系的產氫量可以達到單一氮化鉭產氫量的80倍。氧化鎢亦有助於提高氧化鉭的光催化活性,但其產氫量遠不及氧化鎢和氮化鉭組成的體系。
      在為氮化鉭-氧化鎢Z-scheme體系選擇合適的犧牲試劑過程中,本研究發現甲醇、亞硫酸鈉和硫化鈉這些常用的犧牲試劑即使未添加光催化劑,在全光譜照射下就已有顯著地產氫量,且光催化劑和犧牲試劑的相互作用有時會對產氫量造成負面影響。在甲醇溶液和亞硫酸鈉溶液原有產氫量的基礎上,氮化鉭的添加並不能對產氫量有顯著的提高。且在可見光波段,氮化鉭-氧化鎢Z-scheme體系在甲醇溶液或亞硫酸鈉溶液中的產氫量甚至小於在純水中的產氫量。藉由亞硫酸鈉溶液,本研究進而探討了一系列其在不同放置氧化過程中產氫量的變化,以及室內光照和空氣對其氧化速率的影響。結果顯示該溶液的產氫量隨在空氣中靜置時間的增加而線性下降,且室內光照和氧均對產氫量有明顯影響。


    Many visible-light-driven photocatalysts with a narrow band gap and suitable band edge positions have been developed recently. However, the self-recombination of electrons and holes in a single photocatalyst is one of the main factors that leads to low efficiency of hydrogen production. To overcome this drawback, a Z-scheme system constructed of two photocatalysts has been developed. The aim of this work is to take the advantage of solar energy to achieve higher photocatalytic hydrogen production.
    In this work, Ta3N5, with a bandgap of 2.0 eV and suitable band structure for overall water splitting, was the main material to be investigated. When Ta3N5 and WO3 were combined in the presence of a shuttle redox mediator, the hydrogen production efficiency was greatly improved because electrons and holes were efficiently separated.
    WO3 powder was prepared by a simple sol-gel method followed by calcination, and Ta3N5 was prepared by directly annealing commercial Ta2O5 in NH3. SEM, XRD, and UV-vis absorption analyses were conducted to characterize the morphologies, crystalline phases and band gaps. The amounts of hydrogen production over Ta3N5/ WO3 with different molar ratios in deionized water were collected by gas chromatography, and the optimal molar ratios under visible-light and full spectrum irradiation were observed to be 0.75 and 0.5, respectively. The amount of hydrogen production over Ta3N5/WO3 with the optimal molar ratio under full spectrum irradiation was almost 80 times higher than that over single Ta3N5. Similarly, the Ta2O5/WO3 system also had better photocatalytic activity for water splitting than single Ta2O5, but the improvement was not as much as that of Ta3N5/WO3.
    Common sacrificial reagents, such as methanol, Na2SO3, and Na2S, had significant hydrogen production under full spectrum irradiation without the presence of photocatalyst. Our further research found that the interaction between a photocatalyst and a sacrificial reagent sometimes resulted in negative influence on the hydrogen production. Under full spectrum irradiation, the addition of Ta3N5 did not improve hydrogen production from methanol or Na2SO3 solution. Under visible-light irradiation, hydrogen production over Ta3N5/WO3 from methanol or Na2SO3 solution was even lower than that from deionized water.
    For better understanding of the behavior of sacrificial reagents, the influences of air and light on the hydrogen production from Na2SO3 solution during the storage were further investigated. The result showed that Na2SO3 was easily oxidized in air, and the hydrogen production decreased linearly with increasing storage time. Both oxygen and room light facilitated the oxidation of Na2SO3.

    摘要 I Abstract III 致謝 V Chapter I Introduction 1 1.1 Climate Change 1 1.2 Hydrogen Energy 4 1.3 Photocatalytic Dye Degradation 7 1.4 Photocatalytic Water Splitting 9 1.5 Photocatalysts for Water Splitting 10 1.6 Z-scheme System 15 Chapter II Literature Review 22 2.1 Visible-light-driven Photocatalytic Hydrogen Generation 22 2.2 Tantalum Nitride 24 2.3 Tungsten Oxide 26 2.4 Sacrificial Reagents 28 2.4.1 Photolysis of methanol 32 2.4.2 Photolysis of Na2SO3 aqueous solution 34 2.4.3 Photolysis of Na2S aqueous solution 35 Chapter III Experimental Procedures 36 3.1 Synthesis of Ta3N5 and WO3 Powders 36 3.2 Characterization and Photocatalytic Experiments of the Powders 36 3.2.1 X-ray diffraction (XRD) 36 3.2.2 Scanning electron microscopy (SEM) 36 3.2.3 UV-visible spectrometry 37 3.2.4 Photocatalytic dye degradation 37 3.2.5 Photocatalytic water splitting 38 3.3 Photochemical Experiments of Sacrificial Reagent Solutions 38 3.3.1 Hydrogen production from sacrificial reagent solutions 38 3.3.2 Influence of storage condition on hydrogen evolution from Na2SO3 solution 39 Chapter IV Results and Discussion 41 4.1 Characteristics of Ta3N5 and WO3 Powders 41 4.2 Photocatalytic Dye Degradation 44 4.3 Hydrogen Production of the Solutions with Sacrificial Reagent 47 4.3.1 Hydrogen production from sacrificial reagent solutions without the presence of phtocatalyst 47 4.3.2 Photoreactions in Na2SO3 solution under full spectrum irradiation 51 4.3.3 Hydrogen production from sacrificial reagent solutions with the presence of Ta3N5/WO3 60 4.4 Hydrogen Production from Deionized Water with the Presence of Photocatalysts 71 4.4.1 Ta3N5/WO3 71 4.4.2 Ta2O5/WO3 80 Chapter V Conclusions 88 5.1 Hydrogen Production from Sacrificial Reagent Solutions 88 5.2 Hydrogen Production from Sacrificial Reagent Solutions with the Presence of Photocatalysts 88 5.3 Photocatalytic Hydrogen Production from Deionized Water Using an Indirect Ta3N5/WO3 Z-scheme System 89 Chapter VI Suggested Future Work 90 5.1 Direct Ta3N5/WO3 Z-scheme System 90 5.1.1 Ta3N5/WO3 thin film deposited by ALD with an intimate contact between Ta3N5 and WO3 90 5.1.2 Ta3N5-WOx particles with an intimate contact prepared by a combination of sol-gel and hydrothermal methods. 91 5.2 Cocatalyst for the Ta3N5/WO3 Z-scheme System 91 5.3 Microporous Structured Materials 93 5.4 The Interactions between Photocatalysts and Sacrificial Reagents 93 Chapter VII References 95

    [1] X. Zhang, H. Yang, L. Wang, and Y. Wang, Int. J Nonlinear Sci., 2014, 18, 60-64.
    [2] C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen , T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng, Earth Syst. Sci. Data, 2015, 7, 349-396.
    [3] J. A. Church and N. J. White, Geophys. Res. Lett., 2006, 33, L01602.
    [4] J. Hansen, R. Ruedy, M. Sato, and K. Lo, Rev. Geophys., 2010, 48, RG4004.
    [5] J. Elliott, D. Deryng, C. Müller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Flörke, Y. Wada, N. Best, S. Eisner, B.M. Fekete, C. Folberth, I. Foster, S.N. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A.C. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang, and D. Wisser, Proc. Natl. Acad. Sci., 2014, 111, 3239-3244.
    [6] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, Renew. Sust. Energ. Rev., 2014, 39, 748-764.
    [7] C. H. Liao, C. W. Huang, and J. C. S. Wu, Catalysts, 2012, 2, 490-516.
    [8] A. Midillia, M. Aya, I. Dincerb, and M. A. Rosen, Renew. Sust. Energ. Rev., 2005, 9, 255-271.
    [9] A. Yoshida, T. Okuyama, Y. Mori, N. Saito, and S. Naito, Chem. Mater., 2014, 26, 4076-4081.
    [10] L. Ouyang, M. Ma, M. Huang, R. Duan, H. Wang, L. Sun, and M. Zhu, Energies, 2015, 8, 4237-4252.
    [11] T. Tayeh, A. S. Awad, M. Nakhl, M. Zakhour, J. F. Silvain, and J. L. Bobet, Int. J. Hydrogen Energy, 2014, 39, 3109-3117.
    [12] Y. J. Choi, Y. Xu, W.J. Shaw, and E. C. E. Rönnebro, J. Phys. Chem. C, 2012, 116, 8349-8358.
    [13] H. C. Brown, H. I. Schlesinger, and A. E. Finholt, J. Am. Chem. Soc., 1953, 75, 215-219.
    [14] Y. Zhao, Y. Liu, H. Liu, H. Kang, K. Cao, Q. Wang, C. Zhang, Y. Wang, H. Yuan, and L. Jiao, J. Power Sources, 2015, 300, 358-364.
    [15] L. Schlapbach and A. Züttel, Nature, 2001, 414, 353-358.
    [16] J. M. Ogden, Annu. Rev. Energy Env., 1999, 24, 227-279.
    [17] J. Nowotny, C. C. Sorrell, L. R. Sheppard, and T. Bak, Int. J. Hydrogen Energy, 2005, 30, 521-544.
    [18] Z. Eren, J. Environ. Manage., 2012, 104, 127-141.
    [19] A. Asghar, A. A. A. Raman, and W. M. A. W. Daud, J. Clean. Prod., 2015, 87, 826-838.
    [20] L. P. V. and V. Rajagopalan, Sci. Rep., 2016, 6, 38606.
    [21] A. Ajmal, I. Majeed, R. N. Malik, H. Idrissc, and M. A. Nadeem, RSC, Adv., 2014, 4, 37003-37026.
    [22] Q. Zhang and L. Gao, Langmuir, 2004, 20, 9821-9827.
    [23] S. G. Bratsch, J. Phys. Chem. Ref. Data, 1989, 18, 1-21.
    [24] Y. Fan, D. Li, M. Deng, Y. Luo, and Q. Meng, Front. Chem. China, 2009, 4, 343-351.
    [25] R. M. N. Yerga, M. C. Á. Galván, F. Valle, J. A. V. Mano, and J. L. G. Fierro, Chem. Sus. Chem., 2009, 2, 471-485.
    [26] D. Y. C. Leung, X. Fu, C. Wang, M. Ni, M.l K. H. Leung, X. Wang, and X. Fu, Chem. Sus. Chem., 2010, 3, 681-694.
    [27] Y. Pai and S. Fang, J. Power Sources, 2013, 230, 321-326.
    [28] H. Lin, H. Yang, and W. Wang, Catalyst Today, 2011, 174, 106-113.
    [29] T. M. Breault, J. J. Brancho, P. Guo, and B. M. Bartlett, Inorg. Chem., 2013, 52, 9363-9368.
    [30] J. Zhu and M. Zäch, Curr. Opin. Colloid Interface Sci., 2009, 14, 260-269.
    [31] D.E. Scaife, Solar Energy, 1980, 25, 41-54.
    [32] T. Takata, C. Pan, and K. Domen, Sci. Technol. Adv. Mater., 2016, 16, 33506-33523.
    [33] K. Maeda, J. Photochem. Photobiol. C: Photochem. Rev., 2011,12, 237-268.
    [34] A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1-21.
    [35] K. Lalitha, J. K. Reddy, M. V. P. Sharma, V. D. Kumari, and M. Subrahmanyam, Int. J. Hydrogen Energy, 2010, 35, 3991-4001.
    [36] M. K. Tian, W. F. Shangguan, J. Yuan, S.J. Wang, and Z.Y. Ouyang, Sci. Tech Adv Mater., 2007, 8, 82-88.
    [37] Y. Liu, L. Xie, Y. Li, R. Yang, J. L. Qu, Y. Q. Li, and X. G. Li., J. Power Sources, 2008, 183, 701-707.
    [38] D. Arney, B. Porter, B. Greve, and P.A. Maggard, J. Photochem. Photobio. A-Chem., 2008, 199, 230-235.
    [39] Y. W. Tai, J. S. Chen, C. C. Yang, and B.Z. Wan, Catal. Today, 2004, 97, 95-101.
    [40] H. Wang, F. Wu, and H. Jiang, J. Phys. Chem. C, 2011, 115, 16180–16186.
    [41] A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, J. Phys. Chem. B, 2004, 108, 2637-2642.
    [42] W. Chun, A. Ishikawa, and H. Fujisawa, J. Phys. Chem. B, 2003, 107, 1798-1803.
    [43] Kazuhiko Maeda and Kazunari Domen, J. Phys. Chem. C, 2007, 111, 7851-7861.
    [44] C. Li, S. Li, and L. Chang, J. Mater. Chem. A, 2015, 3, 4695-4705.
    [45] S. H. Mohamed and A. Anders, Surf. Coat. Technol., 2006, 201, 2977-2983.
    [46] T. Hisatomi, J. Kubota, and K. Domen, Chem. Soc. Rev., 2014, 43, 7520-7535.
    [47] S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. Guo, and J. Tang, Energy Environ. Sci., 2015, 8, 731-759.
    [48] P. Zhou, J. Yu, and M. Jaroniec, Adv. Mater., 2014, 26, 4920-4935.
    [49] H. Li, W. Tu, Y. Zhou, and Z. Zou, Adv. Sci., 2016, 3, 1500389.
    [50] K. Maeda, ACS Catal., 2013, 3, 1486-1503.
    [51] X. Wang, G. Liu, Z. Chen, F. Li, L. Wang, G. Q. Lu, and H. M. Cheng, Chem. Commun., 2009, 3452-3454.
    [52] Y. Feng, J. Shen, Q. Cai, H. Yanga, and Q. Shen, New J. Chem., 2015, 39, 1132-1138.
    [53] Y. Liu, G. Ji, M. A. Dastageer, L. Zhu, J. Wang, B. Zhang, X. Chang, and M. A. Gondal, RSC Adv., 2014,4, 56961-56969.
    [54] S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, and B. S. Nanoscale., 2014, 6, 4830-4842.
    [55] S. Chen, L. Ji, W. Tang, and X. Fu, Dalton Trans., 2013, 42, 10759-10768.
    [56] W. Ong, L. Tan, Yun. Ng, S. Yong, and S. Chai, Chem. Rev., 2016, 116, 7159-7329
    [57] S. Y. Chai, Y. J. Kim, and W. I. Lee, J. Electroceram., 2006, 17, 909-912.
    [58] Y. Luo, X. Liu, X. Tang, Y. Luo, Q. Zeng, X. Deng, S. Ding, and Y. Sun, J. Mater. Chem. A, 2014, 2, 14927-14939.
    [59] W. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, J. Phys. Chem. B, 2003, 107,1798-1803.
    [60] S. J. Henderson and A. L. Hector, J. Solid State Chem.,179, 3518-3524.
    [61] L. Yuliati, J. Yang, X. Wang, K. Maeda, T. Takata, M. Antoniett, and K. Domen, J. Mater. Chem., 2010, 20, 4295-4298.
    [62] M. Ritala, P. Kalsi, Diana Riihelä, K. Kukli, M. Leskelä, and J. Jokinen, Chem. Mater., 1999, 11, 1712-1718.
    [63] L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, E.Nykänen, and P.Soininen, Thin Solid Films, 1988, 149-154.
    [64] I. P. Parkin and A. T. Rowley, Adv. Mater., 1994, 6, 780-782.
    [65] C. H. Winter, K. C. Jayaratne, and J. W. Proscia, Mater. Res. Soc. Symp. Proc., 1994, 327, 103-108.
    [66] X. Z. Chen, J. L. Dye, H. A. Eick, S. H. Elder, and K.-L. Tsai, Chem. Mater., 1997, 9, 1172-1176.
    [67] R. Marchand, F. Tessier, and F. J. DiSalvo, J. Mater. Chem., 1999, 9, 297-304.
    [68] B. Mazumder and A. L. Hector, J. Mater. Chem., 2008, 18, 1392-1398.
    [69] H. Lee, J. Park, and S. Kwon, J. Electroceram., 2016, 36, 165-169.
    [70] V. Brizéa, L. Artaudb, G. Berthoméb, R. Boichotb, S. Danielec, I. Nutad, A. Mantouxe, and E. Blanquetf, ECS Trans., 2010, 33,183-193.
    [71] F. Volpi, L. Cadix, G. Berthomé, E. Blanquet, N. Jourdan, and J. Torres, Microelectron. Eng., 2008, 85, 2068-2070.
    [72] W. J. Maeng, S. J. Park, and H. Kim, J. Vac. Sci. Technol. B, 2006, 24, 2276-2281.
    [73] Z. Huang, J. Song, L. Pan, X. Zhang, Li Wang, and J. Zou, Adv. Mater., 2015, 27, 5309-5327.
    [74] D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, and J. Tang, J. Am. Chem. Soc., 2014, 136, 12568-12571.
    [75] A. J. E. Rettie, K. C. Klavetter, J.-F. Lin, A. Dolocan, H. Celio, A. Ishiekwene, H. L. Bolton, K. N. Pearson, N. T. Hahn, and C. B. Mullins, Chem. Mater.,2014, 26, 1670-1677.
    [76] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, and L. J. Chen, Small, 2007, 3, 658-664.
    [77] R. Liu, Y. Lin, L. Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. Hou, and D.Wang, Angew. Chem. Int. Ed., 2011, 50, 499-502.
    [78] K. Zhang, C. McCleese, P. Lin, X. Chen, M. G. Morales, W. Cao, F. J. Seo, C. Burda, and H. Baumgar, ECS Trans., 2015, 69, 199-209.
    [79] K. Hara, K. Sayama, and H. Arakawa, J. Photochem. Photobiol., A, 1999, 128, 27-31.
    [80] C. A. Linkous, C. Huang, and J. R Fowler, J. Photochem. Photobiol., A, 2004, 168, 153-160.
    [81] J. F. Reber, K. Meier, J. Phys. Chem., 1984, 88, 5903-5913.
    [82] H. Liu, J. Yuan, and W. Shangguan, Energy Fuels, 2006, 20, 2289-2292.
    [83] L. Krim, J. Lasne, C. Laffon, and Ph. Parent, J. Phys. Chem. A, 2009, 113, 8979-8984.
    [84] G. Heit, A. Neuner, P. Saugy, and A. M. Braun, J. Phys. Chem. A, 1998, 102, 5551-5561.
    [85] C. Huang, C. A. Linkous, O. Adebiyi, and A. T-Raissi, Environ. Sci. Technol., 2010, 44, 5283-5288.
    [86] R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, and Z. Li, Adv. Mater. Sci. Eng., 2014, 170148, 1-7.
    [87] T. Kawai and T. Sakata, J. Chem. Soc., Chem. Commun., 1980, 694-695.
    [88] W. Lin, W. Yang, I. Huang, T. Wu, and Z. Chung, Energy Fuels, 2009, 23, 2192-2196.
    [89] G. H. Schoenmakers, D. Vanmaekelbergh, and J. J. Kelly, J. Chem. Soc., Faraday T rans., 1997, 93, 1127-1132.
    [90] J. Schneider and D. W. Bahnemann, J. Phys. Chem. Lett., 2013, 4, 3479-3483.
    [91] N. Hykaway, W. M. Sears, H. Morisaki, and S. R. Morrison, J. Phys. Chem., 1986, 90, 6663-6667.
    [92] E. Kalamaras and P. Lianos, J. Electroanal. Chem., 2015, 751, 37-42.
    [93] S. Moradi, P. Aberoomand-Azar, S. Raeis-Farshid, S. Abedini-Khorrami, and M. H. Givianrad, J. Saudi Chem. Soc., 2016, 20, 373-378.
    [94] F. Xiong, L. Yin, Z. Wang, Y.g Jin, G. Sun, X. Gong, and W. Huang, J. Phys. Chem. C, 2017, 121, 9991-9999.
    [95] J. Chen, J. Zhong, J. Li, S. Huang, Z. Xiang, and M. Li, Solid State Sci., 2016, 60, 11-16.
    [96] I. Goldfarb, D. A. A. Ohlberg, J. P. Strachan, M. D. Pickett, J. J. Yang, G. Medeiros-Ribeiro, and R. S. Williams, J. Phys. D: Appl. Phys., 2013, 46, 295303.
    [97] W. Hsu, M. Mishra, W. Liu, C. Su, and T. P. Perng, Appl. Catal., B, 2017, 201, 511-517.
    [98] Y. Yu, W. Zeng, M. Xu, and X. Peng, Physica E, 2016, 79, 127-132.
    [99] A. Boudiba, C. Zhang, C. Bittencourt, P. Umek, M. Olivier, R. Snyders, and M. Debliquy, Procedia Eng., 2012, 47, 228-231.
    [100] R. Huirache-Acuña, F. Paraguay-Delgado, M. A. Albiter, J. Lara-Romero, R. Martínez-Sánchez, Mater. Charact., 2009, 60, 932-937.
    [101] V. Polshettiwar, T. Asefa, and G. Hutchings, Nanocatalysis: Synthesis and Applications, Hoboken: Wiley, 2013.
    [102] D. Feng, W. Luo, J. Zhang, M. Xu, R. Zhang, H. Wu, Y. Lv, A. M. Asiri, S. B. Khan, M. M. Rahman, G. Zheng, and D. Zhao, J. Mater. Chem. A, 2013, 1, 1591-1599.
    [103] U. Meyer, A. Larsson, H. P. Hentze, and R. A. Caruso, Adv. Mater., 2002, 14, 1768-1772.
    [104] D. G. Shchukin and R. A. Caruso, Chem. Mater., 2004, 16, 2287-2292.
    [105] L. Yuan, S. Meng, Y. Zhou, and Z. Yue, J. Mater. Chem. A, 2013, 1, 2552-2557.
    [106] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng, and R. A. Caruso, J. Am. Chem. Soc., 2010, 132, 4438-4444.

    QR CODE