簡易檢索 / 詳目顯示

研究生: 章學涵
Shueh-Hang Chang
論文名稱: 果蠅腦側角區的神經細胞圖譜
A Map of Lateral Horn Neurons in the Drosophila Brain
指導教授: 江安世
Ann-Shyn Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 44
中文關鍵詞: 果蠅腦圖譜側角區腦區三維模型
外文關鍵詞: Drosophila brain, map, lateral horn, neuropil, model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The brain, a homologous organ possessed by most of animals, has many functions. One of the most important brain functions is enabling the animals to react properly to environmental stimuli. To understand how a brain achieves this, mapping the brain’s sensory circuitry becomes essential. The most fruitful work has been the mapping of Drosophila olfactory circuit. Today we have known that: after odorants bind to Drosophila olfactory receptors, the neuronal signals are triggered and relayed by a series of neurons to the higher brain centers including the lateral horn, a brain region involved in non-association behavioral responses to some odorants. For revealing more facts about this brain region, this thesis provides a map of neurons innervating the lateral horn. Also, by analyzing these neurons, it proposes the lateral horn neurons’ possible signal output and input areas in the fly brain, and shows some examples of lateral horn neuron stereotypes. In addition, for helping scientists analyze their image data related to the lateral horn, my colleagues and I have built a representative lateral horn 3D model in a standard brain.


    大部分的動物都有「腦」這個演化同源器官。腦有許多複雜的功能,其中非常重要的一項,就是使動物對週遭的刺激做出適當的反應;譬如追尋食物香味來源或是逃離惡臭的環境。如果我們想要了解腦如何執行這項功能,首先要做的就是描繪出腦中感覺訊息傳達的路徑。目前這項工作進展最迅速,成果最豐碩的就是描繪果蠅腦的嗅覺網路。如今我們已知:當氣味分子與果蠅觸角上的嗅覺接受器結合,神經訊號就會被觸發,接下來一連串的神經細胞會將訊號傳遞到腦中更高階的兩個處理中心;其中一個處理中心是果蠅腦的蕈狀體,這個處理中心與果蠅的嗅覺學習記憶能力有關。另外一個處理中心則是側角區,這個區域與果蠅對氣味的直覺反應有關。為了進一步了解側角區,這篇論文提出了果蠅腦側角區的神經細胞圖譜,呈現出許多側角區神經細胞的三維影像資料;同時藉由分析這些影像資料,本文指出側角區神經細胞可能將訊號送往果蠅腦的某幾個區域,以及某幾個可能將訊息送至側角區的果蠅腦區。另外在本論文中,我們也可以在某種程度上看到側角區神經細胞的幾種特定的空間分布型態。最後,我與幾位同僚一同在果蠅標準腦中建立了一個側角區的三維模型,以利日後的研究人員在一個虛擬的標準腦中處理他們所擷取到的側角區神經細胞影像資料。

    Abstract…………………………………………………………………………………………………………..1 中文摘要………………………………………………………………………………………………………..2 誌謝………………………………………………………………………………………………………………...3 Table of contents……………………………………………………………………………………………..4 Introduction……………………………………………………………………………………………………5 Materials and Methods……………………………………………………………………………………8 Results..................................................................................................................................................................11 Discussions……………………………………………………………………………………………………16 References……………………………………………………………………………………………………..18 Tables and Figures…………………………………………………………………………………………20

    Bargmann, C.I. (2006). Comparative chemosensation from receptors to ecology. Nature 444, 295-301.
    Couto, A., Alenius, M., and Dickson, B.J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15, 1535-1547.
    Dubnau, J., Grady, L., Kitamoto, T., and Tully, T. (2001). Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476-480.
    Fishilevich, E., and Vosshall, L.B. (2005). Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15, 1548-1553.
    Heisenberg, M., Borst, A., Wagner, S., and Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2, 1-30.
    Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D., and Strausfeld, N.J. (1998). The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5, 52-77.
    Jefferis, G.S., Marin, E.C., Watts, R.J., and Luo, L. (2002). Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies. Curr Opin Neurobiol 12, 80-86.
    Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
    Kido, A., and Ito, K. (2002). Mushroom bodies are not required for courtship behavior by normal and sexually mosaic Drosophila. J Neurobiol 52, 302-311.
    Laissue, P.P., Reiter, C., Hiesinger, P.R., Halter, S., Fischbach, K.F., and Stocker, R.F. (1999). Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405, 543-552.
    Lee, K.J., Mukhopadhyay, M., Pelka, P., Campos, A.R., and Steller, H. (1999). Autoregulation of the Drosophila disconnected gene in the developing visual system. Dev Biol 214, 385-398.
    Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205-1217.
    McBride, S.M., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., Baker, G., and Siwicki, K.K. (1999). Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24, 967-977.
    McGuire, S.E., Le, P.T., and Davis, R.L. (2001). The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330-1333.
    Stocker, R.F. (2001). Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity. Microsc Res Tech 55, 284-296.
    Stortkuhl, K.F., and Kettler, R. (2001). Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc Natl Acad Sci U S A 98, 9381-9385.
    Suster, M.L., Martin, J.R., Sung, C., and Robinow, S. (2003). Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. J Neurobiol 55, 233-246.
    Tanaka, N.K., Awasaki, T., Shimada, T., and Ito, K. (2004). Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14, 449-457.
    Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725-736.
    Wu, J.S., and Luo, L. (2006). A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1, 2583-2589.
    Yasuyama, K., Meinertzhagen, I.A., and Schurmann, F.W. (2002). Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445, 211-226.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE