簡易檢索 / 詳目顯示

研究生: 陳彥妤
Yenyu Chen
論文名稱: 新方法萃取65奈米P型金氧半電晶體的有效電性長度及源極汲極寄生電阻
Extracting the Effective Channel Length and Series Resistance of 65nm pMOSFET
指導教授: 龔正
Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 68
中文關鍵詞: 有效長度寄生電阻速度飽和擴散電流漏電流
外文關鍵詞: effective channel length, series resistance, velocity saturation, diffusion current, gate leakage current
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在奈米級MOSFET裡有效電性長度異於光罩長度或物理長度甚多,且是spice元件模型裡最重要的參數之一。本論文考慮奈米級MOSFET中,短通道效應、速度飽和效應、寄生電阻與有效長度效應、閘級漏電流效應、擴散電流效應、ballistic transport等影響,重新推倒IV方程式。
    本論文改善Shift-and-Ratio Method,從實際量得的數據帶入新推導出更精確的IV方程式,萃取出有效長度與寄生電阻,並與Suciu-Jonston Method、De La Moneda Method、Shift-and-Ratio Method及Gate Leakage Method算出的結果做比較,發現傳統方法萃取出的數值不符合物理意義,唯有我們的新方法能得到合理的值。
    本論文在最後簡單討論在P型MOSFET的源極汲極共參雜(co-implant)另一種參雜物的影響。運用新的方法算出有效電性長度及有效寄生電阻在不同製程的差異性,我們發現共參雜氟(fluorine)可以得到最陡峭的接面(abrupt shallow junction)。


    A new, more accurate and more reasonable method of determining the MOSFETs effective channel length and source-drain series resistance is presented in this thesis. This method improves shit-and-ratio method and develops a more accurate calculation system. Comparing the extracted values from the Suciu-Johnston method, De La Moneda method, shift-and-ratio method, gate leakage method, and our new method, we prove that our method is the most accurate and reasonable one. Besides, we use this newly developed method to observe the co-implant source/drain effect in a 65nm pMOSFET.

    1 Introduction 1 2 TheoryReview 3 2.1 General Review and Common Foundation . . . . . . . . . . . 3 2.2 Suciu-JohnstonMethod and De LaMonedaMethod . . . . . . 8 2.3 Shift-and-RatioMethod . . . . . . . . . . . . . . . . . . . . . 9 2.4 Gate CurrentMethod . . . . . . . . . . . . . . . . . . . . . . . 11 3 OurMethod 13 3.1 Velocity SaturationModel . . . . . . . . . . . . . . . . . . . . 13 3.2 Effective Saturated Velocity . . . . . . . . . . . . . . . . . . . 16 3.3 Effect of Diffusion Current . . . . . . . . . . . . . . . . . . . . 18 3.4 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Experiment 28 4.1 Simple Extraction Methodology of IDS . . . . . . . . . . . . . 28 4.2 Devices Characteristics . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Determining ∆L and RSD with the DifferentMethods . . . . . 36 4.3.1 Suciu-Johnston Method and De La Moneda Method . . 36 4.3.2 Shift-and-RatioMethod . . . . . . . . . . . . . . . . . 40 4.3.3 Gate CurrentMethod . . . . . . . . . . . . . . . . . . 43 4.3.4 NewMethod . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 Variations with the different Source/Drain Doping 54 5.1 Co-implant Effect . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Devices Characteristics . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 59 6 Conclusion 62

    [1] Dieter K. Schroder, ”Semiconductor Material and Device Characterization,”
    John Wiley & Sons, 223-237, 1998.
    [2] Paul I. Suciu, Ralph L. Johnston, ”Experimental Derivation of the
    Source and Drain Resistance of MOS Transistors,” IEEE Trans. Electron
    Dev., vol. ED-27, pp. 1846-1847, 1980.
    [3] F. H. De La Moneda, H. N. Kotecha, and M. Shatzkes, ”Measurement of
    MOSFET Constants,” IEEE Electron Dev. Lett., EDL-3, 10-12, 1982.
    [4] Y. Taur, D. S. Zicherman, D. R. Lombardi, P. R. Restle, C. H. Hsu,
    H. I. Hanafi, M. R. Wordeman, B. Davari, and G. G. Shahidi, ”A New
    ’Shift and Ratio’ Method for MOSFET Channel-Length Extraction,”
    IEEE Electron Dev. Lett., 13, 267-269, 1992.
    [5] Y. Taur, ”MOSFET Channel Length: Extraction and Interpretation,”
    IEEE Trans. Electron Dev., vol. 47,160-170, 2000.
    [6] K. Terada and H. Muta, ”A NEW Method to Determine Effective MOSFET
    Channel Length,” Japan. J. Appl. Phys., 18, 953-959, 1979.
    [7] J. G., J. Chern, P. Chang, R. F. Motta, and N. Godinho, ”A New
    Method to Determine MOSFET Channel Length,” IEEE Electron Dev.
    Lett., EDL-1, 170-173, 1980.
    [8] G. Merckel, J. Borell, and N. Z. Cupcea, ”An accurate large-signal MOS
    transistor model for use in computer-aided design,” IEEE Trans. Electron
    Dev., vol. ED-19, 681-690, 1972.
    [9] M. Marin, M. J. Deen, M. de Murcia, P. Llinares, and J.-C. Vildeuil,
    ”New Method for the Channel-Length Extraction MOSFETs with Sub-
    2-nm Gate Oxide” IEEE Electron Dev. Lett., Vol.25, 202-204, 2004.
    [10] E.Miranda, ”Method for Extracting series resistance in MOS devices
    using Fowler-Nordheim plot,” Electronics Letters, 2004.
    [11] N. Yang and J. J. Wortman, ”A study of the effects of tunneling currents
    and reliability of sub-2-nm gate oxides on scaled n-MOSFETs,”
    Microelectron. Reliab., 41, 37-46, 2001.
    [12] Fariborz Assaderaghi, Dennis Sinitsky, Jeffrey Bokor, Ping K. Ko, Henry
    Gaw, and Chenming Hu, ”High-Field Transport of Inversion-Layer Electrons
    and Holes Including Velocity Overshoot,” IEEE Trans. Electron
    Dev., 44, 664-671, 1997.
    [13] D. M. Caugley and R. E. Thomas, Proc. IEEE, 55, 2192-2193, 1967.
    [14] B. J. Moon, C. K. Park, K. Lee, and M. Shur, ”New short channel
    n-MOSFET current-voltage model in strong inversion and unified parameter
    extraction technique,” IEEE Trans. Electron Dev., ED-38, 592-
    602,1991
    [15] B. J. Moon, C. K. Park, K. Rho, K. Lee, M. Shur, and T. A. Fjeldly,
    ”Analytical Model for p-Channel MOSFET’s,” IEEE Trans. Electron
    Dev., ED-38, 2632-2646, 1991.
    [16] Charles G. Sodini, Ping-Keung Ku, and John L. Moll, ”The Effect of
    High Fields on MOS Device and Circuit Performance,” IEEE Trans.
    Electron Dev., EDL-31,1386-1393, 1983.
    [17] F. Fang and X. Fowler, ”Hot-electron effects and saturation velocity in
    silicon inversion layer,” J. Appl. Phys., 41, 1825, 1969.
    [18] L. Ge, J. G. Fossum, and B. Liu, ”Physical Compact Modeling and
    Analysis of Velocity Overshoot in Extremely Scaled CMOS Devices and
    Circuits,” IEEE Trans. Electron Dev., ED-48, 2074-2080, 2001.
    [19] Kunihiro Suzuki, and Tatsuya Usuki, ”Metal Oxide Semiconductor Field
    Effect Transistor(MOSFET) Model Based on a Physical High-Field
    carrier-Velocity Model,” Japan. J. Appl. Phys., 43, 77-81, 2004.
    [20] John R. Hauser, ”A New and Improved Physic-Based Model for Mos
    Transistors,” IEEE Trans. Electron Dev., 52, 2640-2647, 2005.
    [21] Michael Y. Kwong, Chang-Hoon Choi, Reza Kasnavi, Peter Griffin,
    Robert W. Dutton, ”Series Resistance calculation for Source/Drain Extension
    Regions Using 2-D Device Simulation,” IEEE Trans. Electron
    Dev., 49, 1219-1225.
    [22] F. Lime, C. Guiducci, R. Clerc, G. Ghibaudo, C. Leroux, and T. Ernst,
    ”Characterization of effective mobility by split C(V) technique in NMOSFET
    with ultra-thin gate oxides,” Solid State Electronics, 1147-
    1153, 2003
    [23] O. Tonomura, Y. Shimamoto, K. Torii, M. Hiratani, S. Saito, and J.
    Yugami, ”Evaluation of Mobility in the MOSFET With High Leakage
    Current,” ICMT, 91-94, 2003.
    [24] O. Tonomura, Y. Shimamoto, S. Saito, K. Torii, M. Hiratani, and
    J. Yugami, ”Accurate Evaluation of Mobility in High Gate-Leakage-
    Current MOSFETs by Using a Transmission-Line Model,” IEEE Trans.
    Electron Dev., 51, 1653-1658, 2004.
    [25] Jeng-Cherng Jang, and Jeng Gong, ”A Study of Determiin Effective
    Channel Length and Series Resistance, and Noise Model Comparison
    for Submicron MOSFETs,” NTHU
    [26] Michel, A.E., et al., ”Rapid annealing and the anomalous diffusion of
    ion implanted boron into silicon.” Appl. Phys. Lett., 50, 416-418, 1987.
    [27] Angelucci, R., P. Negrini, and S. Solmi, ”Transient enhanced diffusion of
    dopants in silicon induced by implantation damage.” Appl. Phys. Lett.,
    49,1468-1470, 1986.
    [28] Morehead, F.F. and R.F. Lever, ”Enhanced ”tail” diffusion of phosphorus
    and boron in silicon: Self-interstitial phenomena.” Appl. Phys. Lett.,
    48, 151-153, 1986.
    [29] Fahey, P.M., P.B. Griffin, and J. D. Plummer, ”Point defects and dopant
    diffusion in silicon.”, Rev. Mod. Phys., 61, 289-384, 1989.
    [30] L. S. Robertson, J. Jacques, K. S. Jones, M. E. Law, D. F. Downey,
    M.J. Rendon, and D. Sing, ”Co-implantation of Boron and Fluorine in
    Silicon”, Japan Society of Applied Physics, 57-61, 2001.
    [31] P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, ”Carbon
    incorporation in silicon for suppressing interstitial-enhanced boron
    diffusion”, Appl. Phys. Lett., 66, 1370-1372, 1995.
    [32] T. Shano, R. Kim, T. Hirose, Y. Furuta, H. Tsuji, M. Furuhashi, and
    K. Tanijuchi, ”Realization of Ultra-shallow junction: Suppressed Boron
    Diffusion and Activation by Optimized Fluorine co-implantation”,
    IEDM, 821-824, 2001.
    [33] J. R. Shih, M. C. Chiang, H. C. Lin, R. Y. Shiue, Yeng Peng and J. T.
    Yue, ” N-Feet HCI Reliability Improvement by Nitrogen Interstitialization and Its Mechanism”, IEEE 40th Annual International Reliability
    Physics Symposium, 272-277, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE