研究生: |
黃韻容 Huang, YunJung |
---|---|
論文名稱: |
近紅外線光熱效應經皮微針抗菌系統 A Near-Infrared Photothermal Transcutaneous Microneedle System for the Treatment of Infections |
指導教授: | 傅建中 |
口試委員: |
宋信文
游佳欣 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 光熱治療 、聚吡咯 、微針 |
外文關鍵詞: | Photothermal therapy, Polypyrrole, Microneedle patch |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光熱療法(Photothermal therapy, PTT)是近年來在臨床醫學研究領域備受注目的新興的治療方式。不僅能取代化學療法與放射線療法殺死癌細胞,更能夠有效的抑制細菌生長。光熱療法以近紅外線區域的波長照射對光熱感材料使其升溫的利用高溫進行治療。由於雷射的高穿透性及準直性,配合光熱材料,可將治療區域控制在患部,進行有效率的治療。因此廣受醫學界重視。本實驗目標為利用利用以微機電製程技術製作聚吡咯微針貼片,建立一個新型的光熱治療裝置。
本實驗將配合近年來微機電(Micro Electro Mechanical Systems,MEMS)製程技術的進步與普及,發展的新的醫療器材技術—微針(microneedle)。配合過去研究多著重在其導電的聚合物聚吡咯,利用其優異的光熱轉換能力、光穩定性,與配合其良好的生物相容性,製作一種新型光熱療法載體。
在體外實驗中,我們透過調整功率調控聚吡咯微針溫度。以0.5 W/cm2,波長808奈米的近紅外光雷射配合聚吡咯微針進行光熱治療。在動物實驗中,我們證明此裝置有良好的抑制細菌效果,顯示以聚吡咯微針貼片搭配近紅外線照射的光熱治療,是一種相當具有潛力的微生物感染治療方法。
本實驗提供了一種新型的光熱治療模式,此治療方法製作方法簡單,操作簡便且安全。利用聚吡咯光熱效應產生高溫治療細菌感染,既有效且沒有藥物累積性,使用微針進行不會碰觸到痛覺神經達到疼痛,對於患者更無負擔。另外這種產生熱的微針貼片,也提供了微針治療除了藥物傳輸外一種新穎的應用方法。
Photothermal therapy has been highly noticed as a new treatment method in research fields recently. This method is by using photothermal sensitive material with near infrared (IR) light. Those materials have great absorbance of near IR, and can transform the light energy into thermal energy. Provide a new way to treat cancer cells or bacteria infection. Due to the high penetration of laser and its collimation, combining with photothermal sensitive material can produce heat for the efficient treatment. Our goal is to combine the MEMS (Micro Electro Mechanical Systems, MEMS) technology to produce polypyrrole microneedle patch, build a new photothermal therapy devices.
In recent years, by using MEMS technology, researchers developed a new medical equipment technology - microneedle. Polypyrrole (PPy) was mostly often focused on its conductive characteristic, but furthermore which has excellent photothermal conversion capability, light stability, and with its excellent biocompatibility, making PPy a very promising photothermal therapy material.
In our in vitro experiments, we adjusted the power of the near IR to manipulate the temperature. We used 0.5 W/cm2, 808 nm near IR with PPy microneedles to precede our experiment. In animal experiments, we demonstrate that this device has a good effect of bacterial inhibition. Prove the great potential of the PPy microneedle in photothermal therapy.
參考書目
1. Kojic, N., Pritchard, E. M., Tao, H., Brenckle, M. A., Mondia, J. P., Panilaitis, B., ... & Kaplan, D. L. (2012). Focal Infection Treatment using Laser‐Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Advanced functional materials, 22(18), 3793-3798.
2. Zha, Z., Yue, X., Ren, Q., & Dai, Z. (2013). Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced Materials, 25(5), 777-782.
3. Allwood, M. C., & Russell, A. D. (1967). Mechanism of Thermal Injury in Staphylococcus aureus I. Relationship Between Viability and Leakage. Applied microbiology, 15(6), 1266-1269.
4. Lawrence, J. C., & Bull, J. P. (1976). Thermal conditions which cause skin urns. Engineering in Medicine, 5(3), 61-63.
5. Moritz, A. R., & Henriques Jr, F. C. (1947). Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns*. The American journal of pathology, 23(5), 695.
6. Werle, P., Slemr, F., Maurer, K., Kormann, R., Mücke, R., & Jänker, B. (2002). Near-and mid-infrared laser-optical sensors for gas analysis. Optics and lasers in engineering, 37(2), 101-114.
7. 蔣采昕. (2007). 細菌細胞壁組成對光動力治療抑制革蘭氏陽性菌與革蘭氏陰性菌效果之影響. 臺灣大學微生物與生化學研究所學位論文, 1-105.
8. 曾鈺涵. (2010). 赤癬紅對細菌及酵母菌之光動力效應探討. 台北醫學大學口腔醫學院生醫材料暨工程研究所學位論文, 1-67
9. Jo, F. F. (1999). Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy. Journal of biomedical optics,4(4), 392-396.
10. Cunha, B. A. (2001). Antibiotic side effects. Medical Clinics of North America,85(1), 149-185.
11. Lewis, J. H., & Stine, J. G. (2013). Review article: prescribing medications in patients with cirrhosis–a practical guide. Alimentary pharmacology & therapeutics, 37(12), 1132-1156.
12. Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073), 1064-1073.
13. Alanis, A. J. (2005). Resistance to antibiotics: are we in the post-antibiotic era?. Archives of medical research, 36(6), 697-705.
14. Lambert, P. A. (2005). Bacterial resistance to antibiotics: modified target sites.Advanced drug delivery reviews, 57(10), 1471-1485.
15. NIAID(2009, February 18). Antimicrobial (Drug) Resistance. http://www.niaid.nih.gov/topics/antimicrobialresistance/understanding/pages/drugresistancedefinition.aspx
16. Shao, J., Griffin, R. J., Galanzha, E. I., Kim, J. W., Koonce, N., Webber, J., ... & Zharov, V. P. (2013). Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Scientific reports, 3.
17. Huang, X., El-Sayed, I. H., Qian, W., & El-Sayed, M. A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 128(6), 2115-2120.
18. Huang, X., & El-Sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1), 13-28.
19. Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., ... & Li, X. (2007). Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 7(5), 1318-1322.
20. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S. T., & Liu, Z. (2010). Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano letters, 10(9), 3318-3323.
21. Fan, Z. J., Yan, J., Wei, T., Ning, G. Q., Zhi, L. J., Liu, J. C., ... & Wei, F. (2011). Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: High-performance anode materials for lithium ion batteries. ACS nano, 5(4), 2787-2794.
22. Yang, K., Xu, H., Cheng, L., Sun, C., Wang, J., & Liu, Z. (2012). In Vitro and In Vivo Near‐Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Advanced Materials, 24(41), 5586-5592.
23. Wang, C., Xu, H., Liang, C., Liu, Y., Li, Z., Yang, G., ... & Liu, Z. (2013). Iron oxide@ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS nano, 7(8), 6782-6795.
24. Zha, Z., Yue, X., Ren, Q., & Dai, Z. (2013). Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced Materials, 25(5), 777-782.
25. 李俊龍. (2004). 吡咯衍生物/吡咯共聚物製備及其電化學性質之研究. 中原大學化學系博士學位論文, 1-198.
26. Hong, J. Y., Yoon, H., & Jang, J. (2010). Kinetic Study of the Formation of Polypyrrole Nanoparticles in Water‐Soluble Polymer/Metal Cation Systems: A Light‐Scattering Analysis. Small, 6(5), 679-686.
27. Endophthalmitis Vitrectomy Study Group. (1995). Results of the Endophthalmitis Vitrectomy Study: a randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Archives of Ophthalmology, 113(12), 1479.
28. Wang, W.-W., et al.(2011) The Application of Transdermal Drug Delivery Systems. The journal of Taiwan phamacy, 27, 3.
29. Huang, H., Yang, W., Wang, T., Chuang, T., & Fu, C. (2007). 3D high aspect ratio micro structures fabricated by one step UV lithography. Journal of Micromechanics and Microengineering, 17(2), 291.
30. Shafiei, Y., Razavilar, V., & Javadi, A. (2011). Thermal Death Time of Staphylococcus Aureus (PTCC= 29213) and Staphylococcus Epidermidis (PTCC= 1435) in Distilled Water. Journal of Applied Sciences Research, 7(11).
31. Kim, K., Park, D. S., Lu, H. M., Che, W., Kim, K., Lee, J. B., & Ahn, C. H. (2004). A tapered hollow metallic microneedle array using backside exposure of SU-8. Journal of Micromechanics and Microengineering, 14(4), 597.
32. Liu, S., Jin, M. N., Quan, Y. S., Kamiyama, F., Katsumi, H., Sakane, T., & Yamamoto, A. (2012). The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. Journal of Controlled Release, 161(3), 933-941.
33. Henry, S., McAllister, D. V., Allen, M. G., & Prausnitz, M. R. (1998). Microfabricated microneedles: a novel approach to transdermal drug delivery.Journal of pharmaceutical sciences, 87(8), 922-925.
34. Wilke, N., & Morrissey, A. (2007). Silicon microneedle formation using modified mask designs based on convex corner undercut. Journal of micromechanics and microengineering, 17(2), 238.
35. Kim, K., Park, D. S., Lu, H. M., Che, W., Kim, K., Lee, J. B., & Ahn, C. H. (2004). A tapered hollow metallic microneedle array using backside exposure of SU-8. Journal of Micromechanics and Microengineering, 14(4), 597.
36. Gill, H. S., & Prausnitz, M. R. (2007). Coated microneedles for transdermal delivery. Journal of controlled release, 117(2), 227-237.
37. 黃資惠. (2013). 可定位投遞藥物兩階段控制釋放微針陣列應用於黑色素沈澱之治療 (Doctoral dissertation, 國立清華大學).
38. Yang, W. C. (2013). 背面微影技術製作高深寬比微結構與應用. 清華大學奈米工程與微系統研究所學位論文, 1-136.
39. Lee, J. W., Park, J. H., & Prausnitz, M. R. (2008). Dissolving microneedles for transdermal drug delivery. Biomaterials, 29(13), 2113-2124.
40. Hsieh, S. S., Lee, R. Y., Shyu, J. C., & Chen, S. W. (2007). Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar. Energy Conversion and Management, 48(10), 2708-2717.
41. Dixit, P., Lin, N., Miao, J., Wong, W. K., & Choon, T. K. (2008). Silicon nanopillars based 3D stacked microchannel heat sinks concept for enhanced heat dissipation applications in MEMS packaging. Sensors and Actuators A: Physical, 141(2), 685-694.
42. Lawrence, J. C., & Bull, J. P. (1976). Thermal conditions which cause skin burns. Engineering in Medicine, 5(3), 61-63.
43. Moritz, A. R., & Henriques Jr, F. C. (1947). Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns*. The American journal of pathology, 23(5), 695.