研究生: |
黃信川 Shin-Chuan Huang |
---|---|
論文名稱: |
CMOS-MEMS 帶斥濾波器與10 GHz壓控振盪器設計 Design of a CMOS-MEMS Band-Stop Filter and a 10 GHz Voltage-Controlled Oscillator |
指導教授: |
盧向成
Michael S.-C. Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 濾波器 、傳輸線 、電感 、壓控振盪器 |
外文關鍵詞: | filter, transmission lines, inductor, VCO |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以CMOS技術整合的MMICs,有著低成本、小面積和減少拉線所造成的電阻損耗等優點,但金屬線和相鄰元件之間的耦合損耗以及來自摻雜基板的耦合損耗,成為微波電路設計上的一大難題。由於現行CMOS製程低電阻率的矽基板造成的高頻損耗,限制了被動元件在高頻電路的應用。在此論文中,我們分別採取了ground-shielding和微機電後製程兩種方法,改善現行CMOS製程中被動元件的高基板耦合損耗,成功地提高其Q值。在微波濾波器的製作中,採TSMC 0.35μm 2P4M的製程,利用CMOS製程中的金屬層,製作所需的共面波導微帶傳輸線,並經由3D結構模擬軟體HFSS設計其形狀與尺寸,將髮夾型的二分之一波長共振器,設計在38GHz的中心共振頻率,形成一帶斥濾波器。在此研究中,傳輸線採用CPS的結構,以阻絕基板的耦合損耗,提高此濾波器的Q值,其中心頻率(38GHz)Q值約等於20。論文的另一部份則是CMOS微機電壓控振盪器,其電路架構採Cross-coupled 的形式,由TSMC 0.18μm 1P6M製程下線實做。在電路中的LC-tank部分,由於製程中所提供的電感電感值不符合我們的需求,且其Q值也不高,因此,我們將採用自行設計的電感,並利用CMOS微機電後製程的技術,使用簡單的兩道製程程序,改善此LC-tank的效能。首先採用非等向性蝕刻將二氧化矽層移除,接著再採用XeF2等向性蝕刻矽基板,將電感底下掏空,增加電感在高頻的Q值,進而改善振盪器的功率消耗以及相位雜訊。
Due to the high frequency loss from the low resistivity Silicon substrate, the applications of passive component in MIC (microwave integrated circuits) are limited. In this thesis, we use the methods of ground-shielding and MEMS(MicroElectroMechanical system) process to improve the high substrate coupled loss, and enhance the quality factor. The microwave filter fabricated by TSMC 0.35μm 2P4M process, and the half-wavelength hair-pin-like resonator was designed to resonate at 38 GHz to form a band-stop filter. To enhance the quality factor of the filter, the CPS (coplanar stripline) is chosen to prevent the substrate coupled loss. The quality factor is about 20 at the center frequency. The other part of the thesis is the CMOS MEMS VCO (Voltage-Controlled oscillator). In the VCO circuit, the cross-coupled architecture was selected, and fabricated by TSMC 0.18μm 1P6M process. Due to the low quality of inductor provided by the process, we have designed a suitable inductor with improved the quality factor by use of post CMOS MEMS process. The power consumption and phase noise of the VCO can be improved.
[1]. Hao Luo, “Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications," Ph.D. dissertation, Dept of Electrical and Computer Engineering, Carnegie Mellon University Pittsburgh, Pennsylvania 15213, 2003
[2]. K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, “High Q inductors for wireless applications in a complementary silicon bipolar process”, IEEE J. Solid-State Circuits, vol. 31, pp. 4-9, 1996.
[3]. J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, and Y. H. Kwark, “Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low- loss substrates,” IEEE Trans. Microwave Theory Tech, vol. 45, pp. 1961-1968, 1997.
[4]. J. P. Raskin, A. Viviani, D. Flandre and J.-P. Colinge, “Substrate crosstalk reduction using SOI technology, ” IEEE Trans. Electron Devices, vol. 44, pp. 2252-2261, 1997.
[5]. J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh, “Millimeter-wave silicon MMIC interconnect and coupler using multilayer polymide technology, ” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1482-1487, 2000.
[6]. M. Marso, M. Wolter, R. Arens-Fischer, P. Kordos, and H. Luth, “Formation of laterally displaced porous silicon filters using different fabrication methods,” in IEEE Advanced Semiconductor Devices and Microsystems Dig., pp, 95-98, 2000.
[7]. C. T-C Nguyen, L. P. B. Kathei, and G. M. Rebeiz, “Micromachined Devices for Wireless Communication,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1756-1768, 1998.
[8]. M. Hourdart, "Coupled lines: Applications to broadband microwave integrated circuits," Proc. Sixth European Microwave Conference, pp.49-53, 1976.
[9]. P. Holder, “X-band microwave integrated circuits using slotlines and coplanar waveguide,” Radio Electron. Eng., vol. 48 pp. 38-42, Jan. 1978.
[10]. D. F. Williams and S. E. Schwarz, “Design and performance ofcoplanar waveguide bandpass filter,” IEEE Trans. Microwave TheoryTech., vol. 31, pp.558-566, July 1983.
[11]. J. K. A. Everard and K. K. M. Cheng “High performance direct coupledbandpass filters on coplanar waveguide,” IEEE Trans. Microwave Theory Tech., vol. 41, pp.1568-1573, Sept. 1993.
[12]. S. Uysal, “Copalanr waveguide edge-coupled bandpass filters withfinite ground planes,” Electronics Letters, vol-30, No.22, pp. 1862-1863, Oct. 1994.
[13]. F. Mernyei, I. Aoki, and H. Matsuura, “MMIC bandpass filter usingparallel-coupled CPW lines,” Electronics Letters, vol-33, No.5, pp.375-376, Feb. 1997.
[14]. F. L. Lin, C. W. Chiu, and R. B. Wu, “Coplanar waveguide bandpass filter a ribbon-of-brick-wall design,” IEEE Trans. Microwave Theory Tech., vol.47 pp.1589-1596, July 1995.
[15]. A.F Sheta, K. Hettak, J.Ph. Coupez, C.Person, and S. Toutain, “Anew semi-lumped microwave filter structure,” IEEE MTT-S Int.Microwave Symp. Dig., 1995 pp.383-386.
[16]. M. Naghed, M. Rittweger and I. Wolff, “A new method for thecalculation of the equivalent inductances of coplanar waveguide discontinuities,” IEEE MTT-S Int. Microwave Symp. Dig., pp.747-751. 1991
[17]. R. Crampagne and G. Khoo, “Synthesis of certain transmission lines employed in microwave integrated circuit,” IEEE Transactions on Microwave Theory and Technique, vol. 25, pp. 440-442, May 1997.
[18]. G. Ghione and C. Naldi, “Analytical formulas for coplanar lines in hybrid and monolithic MICs,” Electronics Letters, vol. 26, pp. 1916-1918, 1990.
[19]. J. B. Knorr and K. D. Kuchler, “Analysis of coupled slots nad coplanar strips on dielectric substrate,” IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 11, pp.1719-1730, November 1990.
[20]. R. N. Simons, N. I. Dib, and L. P. B. Katehi, “Modeling of coplanar stripline discontinuities,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 5, pp. 711-716, May 1996.
[21]. K. Goverdhannam, R. N. Simons, and L. P. B. Katehi, “Coplanar stripline components for high-frequency applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 10, pp. 1725-1729, October 1997.
[22]. K. Goverdhannam, R. N. Simons, and L. P. B. Katehi, “Coplanar stripline propagation characteristics and bandpass filter,” IEEE Microwave nad Guided Wave Letters, vol. 7, no. 8, pp. 214-216, August 1997.
[23]. Andrew R. Brown,“ High-Q Integrated Micromachined Components For A 28 GHz Front-End Transceiver, ” Ph.D. Dissertation, Dept of Electrical Engineering, University of Michigan, 1999.
[24]. Eun-Chul Park, Yun-Seok Choi, Jun-Bo Yoon, Songcheol Hong, E. Yoon, ”Fully integrated low phase-noise VCOs with on-chip MEMS inductors,” IEEE Trans. on Microwave Theory and Techniques,Vol.51, Iss. 1, pp. 289-296, 2003.
[25]. John W. M. Rogers, Vladislav Levenets, Chris A. Pawlowicz, N. Gamy Tam, Tom J. Smy, and Calvin Plett, “A Completely Integrated 2 GHz VCO with Post-Processed Cu Inductors,” IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, pp. 575-578, 2001.
[26]. M. Straayer, J. Cabanillas, G. M. Rebeiz, “A low-noise transformer-based 1.7 GHz CMOS VCO”, IEEE Int. Solid-State Circuits Conference, Vol. 1, pp. 286 – 287, 2002.
[27]. Bendik Kleveland, Carlos H. Diaz, Dieter Vook, Liam Madden, Thomas H. Lee, and S. Simon Wong “Exploiting CMOS Reverse Interconnect Scaling in Multigigahertz Amplifier and Oscillator Design,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp.1480 -1488, Oct. 2001.
[28]. Kevin J. Chen, Wai Cheong Hon, Jinwen Zhang, and Lydia L. W. Leung,“CMOS-Compatible Micromachined Edge-Suspended Spiral Inductors With High Q-Factors and Self-Resonance Frequencies,” IEEE Electron Device Letters, Volume 25, pp. 363 – 365, June, 2004
[29]. C. Patrick Yue, and S. Simon Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp.743 – 762, May, 1998.
[30]. S.S. Mohan, M. Hershenson, S.P. Boyd, and T.H. Lee, “Simple accurate expressionsfor planar spiral inductances,” IEEE J. Solid-State Circuits, vol. 34, pp. 1419-1424, Oct. 1999.
[31]. Marc Tiebout, ”Physical scaling of integrated inductor layout and model and its application to WLAN VCO design at 11GHz and 17GHz,” IEEE Circuits and Systems, vol. 1, pp.637 – 640, May, 2003.
[32]. Debanjan Mukherjee, Jishnu Bhattachq'ee, and Joy Laskar Debanjan Mukherjee, ”A Differentially-tuned CMOS LC VCO for Low-Voltage Full-Rate 10 Gb/s CDR Circuit,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp.707 – 710, June, 2002.
[33]. J. H. C. Zhan, J. S. Duster, and K. T. Kornegay, “A comparative study of MOS VCOs for low voltage high performance operation,” ISLPED '04. Proceedings of the 2004 International Symposium on Low Power Electronics and Design, pp. 244 – 247, Aug, 2004.
[34]. M. A. Do, R. Zhao, K.S. Yeo, and J.-G. Ma, “Fully integrated 10 GHz CMOS VCO,” IEEE Electronics Letters, vol. 37, pp. 1021 – 1023, Aug, 2001.