簡易檢索 / 詳目顯示

研究生: 胡智喬
Hu, Chih-Chiao
論文名稱: 提升量子點與光阻材料之相容性並於彩色濾光器的應用
Improvement of Compatibility between Quantum Dots and Photoresist Materials and Application in Color Filters
指導教授: 陳學仕
Chen, Hsueh-Shih
口試委員: 鍾淑茹
Chung, Shu-Ru
王冠文
Wang, Kuan-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 79
中文關鍵詞: 量子點光阻液彩色濾光片黃光微影微米圖案
外文關鍵詞: quantum dots, photoresist, color filter, photolithography, mirco-pattern
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要是藉由利用兩性材料當作鏈接劑將量子點進行包覆,增加量子點與光阻溶劑的相容性,進而應用於彩色濾光片中。因量子點表面配體與光阻溶劑的極性差異,導致混合過程會產生混濁沉澱,故需將量子點作包覆來改善相容性。在包覆過程中,需調控量子點表面配體含量、反應溶劑的選擇及鏈接劑的使用量等參數來達到包覆的效果。經鏈結劑包覆後的量子點和極性光阻溶劑(PGMEA)的相容性有明顯提升,溶液澄清且無沉澱物產生。量子點光阻溶液的光學性質在常溫及60℃環境下能擁有良好的穩定性。再經由黃光微影的製程,製作出量子點彩色濾光片,其光學性質也具有良好的熱及光穩定性。且藉由黃光微影的方式,能將量子點彩色濾光片的圖案做到約150至50微米。希望此量子點彩色濾光片未來能應用在micro-LED顯示器中。


    In this study, we did the QDs modification to improve the compatibility between quantum dots (QDs) and photoresist (PR) systems with binders which is amphoteric materials as the linker. There are some factors have to control, such as ligand content on QDs surface, selection of reaction solvent and usage of binders, the QDs can be encapsulated with binders. After binder encapsulation process, the QD-binders are successfully dispersed into PGMEA which is one of the polar solvents for PR systems. QD-binder solutions have good performance at thermal stability. QD-binder solutions are mixed with PR systems to form QD-PR films (the same as QD-CF). In addition, the QD-PR films are able to be fabricated by photolithography process and they have good optical performance in thermal and photo stability. Finally, QD-PR films can be patterned in mirco-scale and the size of pattern can reach about 50 to 150 μm.

    Chapter 1 Introduction ........................................... 7 Chapter 2 Literature review ...................................... 9 2.1 Overview of quantum dot materials ............................ 9 2.1.1 Advantages of quantum dots ................................. 9 2.1.2 Applications of quantum dots in display industry .......... 11 2.2 Composition of color filter ................................. 14 2.3 Working principles of color filter .......................... 16 2.4 Methods of quantum dots and photoresist combination ......... 18 2.4.1 Surface modification methods .............................. 18 2.4.2 Dispersants methods ....................................... 20 2.4.3 Wrinkled silica nanoparticles methods ..................... 23 2.5 Fabrication process of quantum dot color filter (QD-CF) ..... 25 2.5.1 Photolithography .......................................... 25 2.5.2 Ink-jet printing .......................................... 27 2.6 Applications of QD-CF in display ............................ 29 Chapter 3 Experimental .......................................... 33 3.1 Chemicals ................................................... 33 3.2 Preparation of quantum dot/binder solutions ................. 34 3.3 Quantum dot-photoresist (QD-PR) films fabrication ........... 35 3.4 Light conversion efficiency and film thickness measurement .. 36 3.5 Instruments ................................................. 37 3.5.1 Optical characterization .................................. 37 3.5.2 Alpha-step ................................................ 37 3.5.3 Thermal gravimetric analysis (TGA)......................... 37 3.5.4 Dynamic Light Scattering (DLS) ............................ 38 Chapter 4 Results and discussion ................................ 39 4.1 Improvement of compatibility between quantum dots and PGMEA . 39 4.1.1 Fabrication of QD/binder solutions ........................ 39 4.1.2 Compatibility discussion between QD/binders and PGMEA ..... 42 4.1.3 Fabrication of QD/binder solutions in different color ..... 46 4.2 Stability test of QD/binder solutions ....................... 50 4.2.1 Thermal stability of QD/binder solutions .................. 50 4.2.2 Photolithography process stability of QD/binder solutions . 53 4.3 Fabrication of QD films by photolithography ................. 56 4.3.1 Compatibility between photoresist and QD/binder solutions . 56 4.3.2 Optical properties of QD-PR films by different QD concentrations .................................................. 58 4.3.3 Optical properties of QD-PR films by different scatter contents ........................................................ 62 4.3.4 Thermal stability test of QD-PR films ..................... 66 4.3.5 Photo stability test of QD-PR films ....................... 69 4.4 QD-PR film pattern .......................................... 71 Chapter 5 Conclusions ........................................... 75 References ...................................................... 76

    [1] X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119(30), 7019-7029.
    [2] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem., 1997, 101(46), 9463-9475.
    [3] R. Xie, D. Battaglia, and X. Peng, J. Am. Chem. Soc., 2007, 129(50), 15432-15433.
    [4] Y. H. Ko, M. Jalalah, S. J. Lee and J. G. Park, Sci. Rep., 2018, 8, 12881-12887.
    [5] J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, SID Symp. Dig. Tech. Papers, 2012, 43, 895-896.
    [6] H. J. Kim, M. H. Shin, J. Y. Lee, J. H. Kim, Y. J. Kim, Opt. Express, 2017, 25, 10724-10734.
    [7] J. Y. Lien, C. J. Chen, R. K. Chiang, and S. L. Wang, in Proc. SID Symp. Dig. Tech. Papers, 2017, 48, 558-561.
    [8] D. Xie, Y. Qi, B. Zhang, T. Zhou, W. Gao, Z. Wu and X. Zhang, Ferroelectrics, 2018, 528(1), 66-74.
    [9] S. Lee and C. Lee, Polym. Adv. Technol., 2019, 30(3), 749-754.
    [10] H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, J. Disp. Technol., 2016, 12(6), 526-531.
    [11] H. J. Kim, M. H. Shin, and Y. J. Kim, Jpn. J. Appl. Phys., 2016, 55(8), 08RF01.
    [12] B. J. de Gans, P. C. Duineveld and U. S. Schubert, Adv. Mater., 2004, 16, 203.
    [13] M. Singh, H. M. Haverinen, P. Dhagat and G. E. Jabbour, Adv. Mater., 2010, 22, 673.
    [14] L. Wu, Z. Dong, F. Li, H. Zhou and Y. Song, Adv. Optical Mater., 2016, 4, 1915.
    [15] H. M. Kim, M. Ryu, J. H.J. Cha, H. S. Kim, T. Jeong and J. Jang, Journal of SID, 2019, 27(6), 347-353.
    [16] T. Zhou, B. Zhang, Y. Qi, D. Xie, J. Yao, Z. Cao, Z. and J. Xue, SID Symposium Digest of Technical Papers, 2016, 47(1), 1469-1471.
    [17] H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen and R. S. Liu., Angew. Chem. Int. Ed., 2016, 55(28), 7924-7929.
    [18] P. Tao, Y. Li, R.W. Siegel and L.S. Schadler, L. S., J. Mater. Chem. C, 2013, 1(1), 86-94.
    [19] K. Um, H. J. Kim, J. H. Jo, H. Jeon, H. B. Yang, Y. J., Kim and K. Lee, J. Chem. Eng., 2019, 369, 109-115.
    [20] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463-9475.
    77
    [21] S. Baskoutas, A. F. Terzis, J. Appl. Phys. ,2006, 99, 013708-013708.
    [22] D. Vasudevan, R. R. Gaddam, A. Trinchi and I. Cole, J. Alloys Compd., 2015, 636, 395-404.
    [23] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science, 1998, 281, 2013-2016.
    [24] W. C.Chan , S. Nie, Science,1998 , 281 , 2016-2018.
    [25] C. Y. Zhang, H. C. Yeh, M. T. Kuroki, T. H. Wang, Nat. Mater., 2005, 4, 826-831.
    [26] L. Shi, V. De Paoli, N. Rosenzweig, Z. Rosenzweig, J. Am Chem. Soc., 2006, 128, 10378-10379.
    [27] J. A. Lott, N. N. Ledentsov, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S Kop'ev, D. Bimberg, Electron. Lett., 1997, 33, 1150-1151.
    [28] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, Appl. Phys. Lett., 1998, 73, 2564-2566.
    [29] H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee, D. Y. Jeon, Adv. Mater., 2008, 20, 2696-2702.
    [30] Q. Sun, Y. A.Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, Y. Li, Nature Photon., 2007, 1, 717-722.
    [31] N. Park, M. Kim, T. S. Park, S. J. Appl. Phys. Lett., 2001, 78, 2575-2577.
    [32] V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, O. C. Farokhzad, Nano Lett., 2007, 7, 3065-3070.
    [33] E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, H. S. Kim, J Am Chem Soc., 2005, 127, 3270-3271.
    [34] M. Zhang, B. Hu, L. Meng, R. Bian, S. Wang, Y. Wang, H. Liu, L. Jiang, J. Am. Chem. Soc., 2018, 140, 8690−8695. [35] F. H. Dill, W. P. Hornberger, P. S. Hauge and J. M. Shaw, IEEE T. Electron Dev., 1975, 22(7), 445-452.
    [36] T. Kudo, Y. Nanjo, Y. Nozaki, K. Nagao, H. Yamaguchi, W. B. Kang and G. Pawlowski, J. Photopolym. Sci. Technol., 1996, 9(1), 109-119.
    [37] T. Kudo, Y. Nanjo, Y. Nozaki, K. Nagao, H. Yamaguchi, W. B. Kang and G. Pawlowski,, Jpn. J. Appl. Phys., 1998, 37(3R), 1010.
    [38] T. Sugiura, Journal of SID, 1993, 1(3), 341-346.
    [39] Y. D. Kim, J. P. Kim, O. S. Kwon and I. H. Cho, Dyes and pigments, 2001, 81(1), 45-52.
    [40] H. S. Koo, M. Chen and P. C. Pan, Thin solid films, 2006, 515(3), 896-901.
    [41] K. Cheng, W. W. W. Chiu, C. S. Jang, C. C. Lai, Y. K. Ho, and J. Chang, NIP and Digital Fabrication Conference., 2003, 1, 309-313. [42] M. Tani, T. Sugiura, SID Lect., 1995, 2, F5.1-F5.23.
    78
    [43] M. Tani, T. Sugiura, Proc., 1994, 103-111
    [44] T. Sugiura, Journal of SID, 1993, 1(2), 177-180.
    [45] H. Itoh, A. Karasawa, K. Sugimoto, Euro., Patent Appl., 1998, EP0, 832, 942, A2.
    [46] SABNIS, Ram W., Displays, 1999, 20(3), 119-129.
    [47] Y. H. Lai, C. C. Chan, K. L. Hwu and W. M. Huang, SID Symposium Digest of Technical Papers,
    2012, 43, 1365-1367.
    [48] C. C. Jaing, C. R. Yang, C. M. Chang, C. T. Lee and C. N. Hsiao, J. Micro-nanolith Mem., 2009, 8(3), 033009.
    [49] G. Wyszecki and W. S. Stiles, John Wily and Sons, 1982, 21.
    [50] L. Liu, Q. Peng and Y. Li, Inorg.Chem., 2008, 47, 5022.
    [51] M. N. Tchoul, S. P. Fillery, H. Koerner, L. F. Drummy, F. T. Oyerokun, P. A. Mirau, M. F. Durstock and R. A. Vaia, Chem. Mater., 2010, 22, 1749.
    [52] A. J. Houtepen, Z. Hens, J. S. Owen and I. Infante, Chem Mater., 2017, 29, 752‐761.
    [53] J. M. Azpiroz and F. De Angelis, Appl. Mater. Interfaces., 2015, 7, 19736‐19745.
    [54] M. M. Krause, L. Jethi, T. G. Mack, P. Kambhampati, J. Phys. Chem. Lett., 2015, 6, 4292‐4296.
    [55] Y. Yang, H. Qin, M. Jiang, Nano Lett., 2016, 16, 2133‐2138.
    [56] J. S. Kang, J. Lim, W. Y. Rho, J. Kim, D. S. Moon, J. Jeong, D. Jung, J. W. Choi, J. K. Lee and Y. E. Sung, Sci. Rep., 2016, 6, 1-14.
    [57] W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, W. Cao, Part. Syst. Char., 2015, 32, 922-927.
    [58] X. Dai, Y. Deng, X. Peng, and Y. Jin, Adv. Mater, 2017, 29(14), 1607022.
    [59] Z. Hu, S. Zhang, W. Peng, S. Zhang, Y. Li, D. Li, S. Jiao, S.-J. Chen, C.Y. Lee and H. Zhou, Journal of SID, 2019, 50 (1), 1075-1078.
    [60] T. M. Smeeton, E. Angioni, E. A. Boardman, M. Izumi, N. Iwata, Y. Nakanishi and T. Ishida, Journal of SID, 2019, 50 (1), 742-745.
    [61] B.L. Huang, T.-L. Guo, S. Xu, Y. Ye, E.-G. Chen and Z.-X. Lin, IEEE Photon. Journal, 2019, 11(3), 700609.
    [62] Y. Liu, J. Lai, X. Li, Y. Xiang, J. Li, and J. Zhou, IEEE Photon. Journal, 2017, 9(1), 1-7.
    [63] E. Lee, S. Kan, C. Hotz, J. Yurek, Z. Luo, H. Kim, and Carpenter, A. SID Symposium Digest of Technical Papers, 2017, 48(1), 984-987.
    79
    [64] Y. Kang, Z. Song, X. Jiang, X. Yin, L. Fang, J. Gao, and F. Zhao., Nanoscale Res. Lett., 2017, 12(1), 154.
    [65] Y.-C. Shih, F. G. Shi, IEEE J. Sel. Top. Quant. Electron., 2017, 23(5), 1901304.
    [66] N. Koma, M. Hashizume, H. Kato, T. Ishinabe and H. Fujikake, SID Symposium Digest of Technical Papers, 2018, 49(1), 1660-1663.
    [67] H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo and Y. J. Kim, Journal of Display Technology, 2016, 12(6), 526-531.
    [68] C. Yoon, T. Kim, M.-H. Shin, Y.-G. Song, K. Shin, Y.-J. Kim and K. Lee, J. Mater. Chem., 2015, 3, 6908-6915.
    [69] H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo and Y. J. Kim, Journal of Display Technology, 2015, 12(6), 526-531.

    QR CODE